MEG II実験液体キセノンガンマ線検出器におけるMPPCの 大強度ミューオンビーム環境下での光子検出効率低下率測定 Measurement on the degradation rate of Photon Detection Efficiency of MPPC in the Liquid Xenon Gamma-ray Detector of the MEG II Experiment

日本物理学会 2020年春季大会 名古屋大学

小林 暁(東大理), 他MEG IIコラボレーション

Satoru Kobayashi on behalf of the MEG II collaboration The University of Tokyo



### Outline

- Related talks
- Introduction
  - MEG II experiment
  - Liquid Xenon Gamma-ray Detector Upgrade
  - PDE Calibration
  - PDE History from 2017 to 2018
- Photon Detection Efficiency of VUV-MPPC
  - PDE History in 2019
  - MPPC Mass test in 2019
  - Possible Cause of PDE deterioration
- Summary & Prospects

### **Related talks**

- We MEG II Liquid xenon group have several talks focused on the radiation damage of photodetectors(VUV-MPPC, PMT).
- Four presentations on photodetectors of MEG II LXe gamma-ray detector.
  - K. Toyoda(16pG22-10):
    - PMT gain degradation & solution
  - S. Kobayashi(16pG22-11):
    - MPPC PDE degradation measurement in 2019
  - K. leki(16pG22-12):
    - Annealing effect on MPPC PDE
  - S. Ogawa(16pG22-13):
    - Detecter performance with reduced MPPC PDE
- Two presentations about lab tests of VUV-MPPC.
  - R. Onda(17aG22-7):
    - PDE degradation test at room temperature
  - K. Shimada(17aG22-8):
    - PDE degradation test at low temperature

### µ→eγ search



- $\mu \rightarrow e\gamma$  decay is a lepton flavor violating decay.
  - Almost forbidden in SM+v. oscillation(Br( $\mu \rightarrow e\gamma$ )~10<sup>-54</sup>)
  - **Predicted** in some theories(Br( $\mu \rightarrow e\gamma$ ). 10-11~10-11)
- Current upper limit of  $Br(\mu \rightarrow e\gamma)$  is given by the MEG experiment.
  - 4.2×10<sup>-13</sup> (90% C.L.)

## **MEG II Experiment**



- MEG II will search for the  $\mu \rightarrow e\gamma$  decay with unprecedented sensitivity.
  - Goal:  $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$  in 3 years
  - Even higher intensity muon beam $(3 \times 10^7 \mu/s \rightarrow 7 \times 10^7 \mu/s)$
  - **Detector upgrade**( × 2 improvement for each detector)
- Liquid Xenon gamma-ray detector measures position, energy and timing of the incident gamma-ray.

# Liquid Xenon Detector Upgrade



- 216 2-inch PMTs 
  → 4092 12×12 mm<sup>2</sup> VUV-MPPCs.
  - High granularity, uniform readout at the entrance face.
    - Position resolution: 5 mm  $\rightarrow$  **2.5 mm**
    - Energy resolution:  $2\% \rightarrow 1\%$
- Detector commissioning is in progress from 2017.
  - The number of readout electronics is limited to 1/4.

### **Calibration instruments**



- LEDs( $\lambda = 460 \text{ nm}$ ) for calibration of gain and excess charge factor(ECF).
- 25<sup>241</sup>Am sources (5 wires × 5 points, 5.5 MeV α-ray) for PDE calibration.
- PDE for VUV light is estimated using MC simulation.
  - Detector conditions have to be taken into account.

# MPPC PDE history in 2017 and 2018 Reminder



- Fast MPPC PDE decrease under high intensity muon beam was implied.
- Precise measurement on the deterioration rate was necessary.

# PDE History in 2019



Relative Light yield of liquid xenon

Relative Light yield of liquid xenon

### PDE for VUV light significantly decreased over time.

- 9(2)%/160 hours = 0.06(1)%/hour(@ MEG II intensity  $7 \times 10^{7} \mu/s$ )
- Response for visible light from LEDs also decreased but only by 1%.
  - The product of gain, excess charge factor and PDE for visible light.
- Instability of light yield of liquid xenon does not account this decrease.
  - $2 \pm 2\%$  decrease in 2019 run

### PDE from 2017 to 2019



- VUV sensitivity decreased by relatively ~40% after 530 hours of beam usage.
  - Very fast: We were going to use  $\mu$  beam for 140 days per one year.
  - MPPC PDE reaches zero in **70 days** when we assume linear decrease.
  - Lab test at room temperature indicates that PDE decrease saturates at 30%
    - (17aG22-7(R. Onda))
- A good news is that we found the annealing were able to recover PDE by 80%
  - (16pG22-13(K. leki)).
  - We are going to do the annealing when the PDE becomes too low to achieve a good resolution.

### Mass MPPC Test before 2019 run



- Right after 2018 run, we examined all MPPCs in order to confirm that almost all MPPCs are usable after two years of pre-engineering runs.
- PDE was well correlated with the simulated VUV photon radiation dose.
  - VUV photon irradiation seems to be a strong candidate of PDE decrease.
  - Other candidates: Gamma-ray or electron/positron

# **Possible Reason of PDE Degradation**



- Surface damage at the interface of Si-SiO2 is the most suspicious.
  - Recombination in the vicinity of the interface is enhanced.
  - PDE for VUV light can be reduced.
  - Annealing should recover PDE by de-trapping of holes.
- VUV photon radiation in 2019: 5-6e12 photons(MC simulation).

- MEG II liquid xenon gamma-ray detector has 4092 VUV-MPPCs.
- 2017 and 2018 commissioning data implied an unexpected decrease of VUV sensitivity of MPPC.
  - Not conclusive due to sparse monitoring.
- Decrease of MPPC VUV sensitivity under high intensity muon beam was confirmed in 2019 run.
  - 9(2)% /160 hours = 0.06(1)%/hour @  $7 \times 10^7 \mu/s$
  - Decrease of sensitivity for visible light was far smaller.
- VUV photon irradiation might be degrading MPPC PDE.
  - Correlation between PDE and radiation dose.
  - In 2019,  $5 \sim 6 \times 10^{12}$  VUV photons after 160 hours.

- Lab tests to reproduce and investigate PDE decrease.
  - Will the PDE decrease be saturated at some point?
  - Is VUV photon really the reason of PDE decrease?
  - 17aG22-7(R. Onda), 17aG22-8(K. Shimada)
- Optimization of annealing configuration.
  - HV, temperature, duration, etc...
  - 16pG22-13(K. leki)
- Simulation of detector performance with reduced sensitivity.
  - This determines how many times we should perform annealing in one year.
  - 16pG22-14(S. Ogawa)



### Thank you for your attention!!

### **VUV-MPPC for MEG II Liquid Xenon Gamma-ray Detector**



- PDE of VUV-MPPC was measured to be ~20%.
  - <u>"Large-area MPPC with enhanced VUV sensitivity</u> for liquid xenon scintillation detector "

# Light yield monitoring in 2019



Relative Light yield of liquid xenon

- Light yield of liquid xenon was measured using PMT. •
  - From MEG's experience, we know that PMT QE is relatively stable.
- PMT Gain was monitored in two ways by LED. •
- Alpha data indicated that the PMT response to VUV scintillation decreased by 2-4%.
- There are three scenarios depending on gain monitoring method and interpretation.
  - 0% or 2% or 4% decrease.
  - We use the intermediate scenario as the best estimate and use others for error estimation.

#### Satoru Kobayashi