

Evaluation of Radiation Damage to VUV-MPPC for MEG II Liquid Xenon Detector

Rina Onda On behalf of MEG II collaboration The University of Tokyo

Y Detector of MEG II Experiment

γ detector

Inside LXe

- MEG II experiment searches $\mu \rightarrow e \gamma$ decay, which is one of charged Lepton Flavor Violation.
- Liquid xenon photon detector (LXe) detects enegy, position and timing of γ .
- Scintillation lights from liquid xenon are detected with PMTs and MPPCs.

PDE Degradation of VUV-MPPC in LXe

Estimated Radiation in 2019

Irradiation Source	Dose
γ (Gy)	1×10^{-2}
neutron (n/cm²)	2.7×10^{6}
Photon (/mm²)	$5.6 imes 10^{10}$

- PDE for VUV light of the VUV-MPPCs in LXe was observed under μ beam.
 ← Radiation damage??
- It is known that there is no effect on PDE of other types at the dose level of MEG II.

PDE for VUV Light (γ/neutron irradiated samples)

Reported in JPS (2019/09/17)

We measured PDE of γ /neutron irradiated samples using scintillation light of LXe from α source.

- γ : Co \rightarrow Ni + e⁻ + γ @ Takasaki Advanced Radiation Research Institute in Jan. 2015.
- neutron: ${}^{9}Be + d^{+} \rightarrow {}^{10}B + n @$ Kobe University tandem accelerator in Jan. 2015.

	Dose of Sample	MEG II Expected	
γ (Gy)	1.4×10^3 , 4.1×10^3	0.6	
neutron (n/cm ²)	$4.8 \times 10^9 - 2.0 \times 10^{12}$	1.6×10^{8}	

PDE degradation was not observed for γ /neutron irradiated samples.

Possible Cause of PDE Degradation

- The issue of the PDE degradation for the VUV-MPPC was discussed with HPK.
- Similar degradation is known for photodiode: **QE of photodiode is reduced after** strong UV light irradiation.
- Surface damage at Si-SiO₂ interface is most suspicious.
 - lonizing particles such as γ , charged particle and **VUV light can damage it**.
 - The electric field near the interface can be reduced by accumulated holes from the ionization.

• Wavelength dependence of PDE degradation can be explained.

• Annealing can be effective to remove the accumulated charge.

VUV Light Irradiation

- Light source
 - For irradiation : xenon lamp
 - For measurement : xenon lamp (with filters) borrowed by Dr. Nakamura (YNU) LED (λ ~380 nm)
- Irradiated photo sensor
 - VUV-MPPC
 - standard MPPC (S13350-3050PE)
- Reference photo sensor
 - SiPD (S12698-02, Hamamatsu), which is tolerant to UV light
 - VUV-MPPC
 - standard MPPC (S13350-3050PE)

Expectation :

- PDE degradation
- Saturation of PDE degradation
- Dependence of the level of PDE degradation on wavelength

Xenon Flash Lamp: L9455-13 (Hamamatsu)

Setups for Irradiation

- The setups were placed in a thermal chamber and the temperature was kept at 25°C.
- Photo sensors were mounted on a support structure.
- They were irradiated directly with the xenon lamp.

Setups for Measurement

- For the measurements, light from a xenon lamp was reduced with some filters.
 - bandpass filters to select VUV light $\lambda_1 = 193.0 \text{ nm}, \text{T}_1 = 26\%, \text{FWHM}_1 = 20.0 \text{ nm}$ $\lambda_2 = 181.0 \text{ nm}, \text{T}_2 = 28.2\%, \text{FWHM}_2 = 38.5 \text{ nm}$
 - ND filter to reduce light $T = 3.3\% @ \lambda \sim 190 \text{ nm}$
- Charge was measured by recording waveforms with an oscilloscope or a waveform digitizer. $^{7/17}$

Flow of VUV Light Irradiation

The experiment was done in the three steps.

Stability of Light

- Current of irradiate SiPD for a xenon lamp started to decrease though that of non-irradiated SiPD was stable.
 → QE of the irradiated SiPD decreased.
- Current of irradiate SiPD for LED is increasing though that of non-irradiated SiPD was almost stable.
 → Effect of UV cleaning? (ref:https://www.ushio.co.jp/jp/technology/glossary/glossary_ha/vuvcleaning.html)
- Current of non-irradiated SiPD for LED slightly decreased in the last 200 hours.
 → Light yields of LED may have decreased.

PDE for VUV Light

Relative Charge during Irradiation

Intensity: 5.2e13 photons/mm²/h @ λ ~190 nm Total dose: 3.1e16 photons/mm² @ λ ~190 nm

Charge of irradiated VUV-MPPCs decreased and was saturated at 35%.

- The degradation was >10³ times slower than that observed by LXe.
 ← Lower temperature accelerate it?
- Charge of non-irradiated sample was stable though there was a slight increase.

← Effect of UV cleaning?

- Charge of irradiated standard MPPCs also was **saturated at 70%.**
- Charge of a non-irradiated standard MPPC decreased gradually. ← probably because of light leakage from the irradiation source.
- The irradiated samples seemed to be annealed in room temperature during 12 day intermission.

ightarrow 11% recovery

*makers of similar colors correspond to different chips on the same VUV-MPPC or different standard MPPCs

PDE for NUV Light

Relative Charge during Irradiation

*makers of similar colors correspond to different chips on the same VUV-MPPC or different standard MPPC

- Charge decrease of irradiated samples also observed for visible light.
- Charge of irradiated VUV-MPPCs decreased and was **saturated at 25%.**
- Charge of irradiated standard MPPCs also decreased and was **saturated at 80%.**
- The annealing effect was also observed.
 → 8% recovery

Wavelength Dependence of PDE Degradation

CCD Image Sensors in Deep-Ultraviolet

- PDE degradation of VUV-MPPC for NUV light was greater than that for VUV light.
 - ← Can be explained by **wavelength dependence of absorption**:
 - Absorption depth in Si is the minimum at λ ~280 nm.
 - Other components such as absorption in SiO_2 can also affect the dependence.
- Inconsistency b/w VUV-MPPC and standard MPPC can be caused by structure differences.12/17

Annealing

0.8 0.6 0.4 0.2 01 10 20 30 40 0 annealing time (h)

NUV light

- The irradiated VUV-MPPC was annealed for 45 hours.
- It was exposed to room light with the reverse bias voltage of 70 V. •
- Current was ~30 mA and surface temperature reached ~70°C.
- PDE for both light source was recovered completely.

13/17

50

I-V Curve

- Dark current of the VUV-MPPC increased by irradiation. •
 - ➤ Increase of current below the break down voltage was significant. ←Increase of surface current
- Annealing reduced it to some extent, but not completely. ٠
- There was no difference in the standard MPPCs. •

 \leftarrow Difference of structures or the damage level?

Reirradiation after Annealing

- Reirradiation was performed after annealing.
- The speed of PDE degradation seems to become slower than that before annealing.
- It was reduced gradually.
 → supposed to be saturated again.

Summary

- Irradiation using a xenon lamp was performed at room temperature.
- Total dose was 3.1e16 photons/mm² @ λ ~190 nm. (though there was a PDE recovery during intermission)

• PDE degradation was observed.

- The degradation saturated as expected.
- The speed is much slower than that observed by LXe.
 → Accelerated by lower temperature? (see 17aG22-8)
- Wavelength dependence was inconsistent to the expectation.
- The dependence was not the same $\ensuremath{\mathsf{b}}\xspace/w \ensuremath{\mathsf{w}}\xspace$ the VUV-MPPC and the standard MPPC.

PDE _{after} / PDE _{before}	VUV light	NUV light
VUV-MPPC	35%	25%
Standard MPPC	70%	80%

• PDE recovered completely thanks to annealing.

Prospects

Precise estimation of the dose level

- Irradiation light included all wavelengths from a xenon lamp.
 → It was difficult to estimate the dose level with the current setups.
- We will use a 20W module (×4 powerful!!).
 - \rightarrow Irradiation can finish in reasonable time (~1 month) even with a bandpass filter.

Study on wavelength dependence

• We observed differences of PDE degradation depending on wavelength.

PDE _{after} / PDE _{before}	VUV light	NUV light
VUV-MPPC	35%	25%
Standard MPPC	70%	80%

- We can monitor PDE for several wavelengths using LEDs and a xenon lamp:
 - 181 or 193 nm from a xenon lamp
 - 280, 380, 465, 569, 645 nm from LEDs

Backup Slides

Temperature

Temperature during Irradiation

- Temperature around the VUV-MPPC was monitored.
 - There is a increase at the beginning of each irradiation.
 - It was stable within 1°C.

Spec of ND Filters

20/17

Spec of Bandpass Filters

C:\Program Files\SpectraSense\Data\2019\CH#2\051414A2-180-B_6-10-2019_1h42m38s_pm.arc_data 6/10/2019 2:05:19 PM

Radiation Damage to Glue(?)

Before Irradiation

After Irradiation

After the irradiation, color of glue(?) which fixes the quartz window to the VUV-MPPC was changed. ↔ The window peeled off during the previous irradiation.

Gas Annealing

- Irradiated VUV-MPPC was annealed @ 45°C in a thermal chamber.
- Non-irradiated VUV-MPPC was annealed @ 70°C beforehand.
- Temperature dependence is included.
 - The first drops : increase
 - The last jumps : decrease
- PDE of the irradiated sample was completely recovered.

*The first point is normalized to be 0.6 as for the irradiated sample.

Defects in SiO₂

The energy levels introduced in the band-gap of SiO₂ due to presence of some defects

Photoelectric Effect on Si

- Typically, a photon with an energy of 1.1 eV to 3.1 eV generates a single e-h pair in the Si.
- More energetic photons with energies greater than 3.1 eV can produce multiple e-h pairs.
- For a photon with an energy greater than 10 eV, the average number of electrons generated is

$$\eta_{\rm i} = \frac{E_{\rm ph}({\rm eV})}{E_{\rm e-h}}$$

where, E_{e-h} is the energy required to generate an e-h pair, which for Si is 3.65eV/electron at room temperature.

Therefore, photons with different energies interact with Si in a slightly different manner.

Interaction of photons at different energies with silicon

I-V Curve with Bulk Damage

Exemplar current-voltage curves for a KETEK SiPM (15 μ m pixel size) irradiated with neutrons up to $\Phi_{eq} = 5 \cdot 10^{14}$ cm⁻² and operated at -30 C.

In the region of unit gain (V ~ 5 V) the dark current increases by about three orders of magnitude after $\Phi_{eq} = 5 \cdot 10^{14} \text{ cm}^{-2}$, whereas above breakdown voltage the increase is more than six orders of magnitude.

E. Garutti, R. Klanner, D. Lomidze, J. Schwandt, M. Zvolsky, Characterisation of highly radiation-damaged SiPMs using current measurements,arXiv:1709.05226.

