

MEG II 実験液体キセノン検出器用MPPCに対して 低温環境が与える影響の評価

Kohei Shimada
On behalf of MEG II collaboration
The University of Tokyo

Mar. 2020

Introduction

- The motivation of searching $\mu \rightarrow e \gamma$
- Overview of MEG II
- Liquid xenon photon detector

MPPC

- VUV-sensitive MPPC
- The mechanism of VUV detection
- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease

- Motivation of the measurement
- Setup
- · Result
- Summary

The motivation of searching $\mu \rightarrow e \gamma$

- Neutrino oscillation was discovered (1998)
 - →Shows that neutrinos have mass and mixing
- $\mu \rightarrow e \gamma$ in the standard model

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \simeq 10^{-54}$$

→Cannot be observed

- $\mu \rightarrow e \gamma$ in a new physics e.g. SUSY GUT
 - →Assume unknown heavy particle

$$Br(\mu \to e\gamma) = \mathcal{O}(10^{-12}) - \mathcal{O}(10^{-14})$$

 \rightarrow Can be observed

Neutrino

Charged lepton

Overview of the MEG II experiment at Paul Scherrer Institut

- The world's most intense μ beam $7 \times 10^7 \mu/\text{sec}$
- Muons are stopped at the target
- Two-body decay

 The photon energy, interaction point position and time are measured by <u>LXe</u>

Liquid xenon photon detector (LXe)

- · Liquid xenon to measure 52.8MeV photon
- Detect the scintillation ($\lambda = 175$ nm)
- · 4092 MPPC , 668PMTs at 165K
- Energy and position resolutions will be improved as compared with MEG by a factor of two
- Under commissioning since 2017

Introduction

- The motivation of searching $\mu \rightarrow e \gamma$
- · Overview of MEG II
- Liquid xenon photon detector

MPPC

- VUV-sensitive MPPC
- The mechanism of VUV detection
- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease

- · Motivation of the measurement
- Setup
- · Result
- Summary

VUV-sensitive MPPC (SiPM)

- · SiPM is a high-performance photon detector
- VUV-sensitive MPPC has been newly developed for MEG II

15 mm

2.5 mm

- Operational at low temperature (165K)
- Photon detection efficiency (PDE) >15% at $\lambda = 175$ nm
- Large sensitive area $(12 \times 12 \text{ mm}^2)$

The mechanism of photon detection

- General SiPM
- Depletion layer: p-n junction
- Incoming photons generate electron-hole pairs
- Reverse voltage is larger than a threshold
 - →"Geiger mode"
- · In geiger mode, carriers make other carriers
 - →Number of electron-hole pairs increase exponentially (avalanche multiplication) to make a signal
- Insensitive to VUV
 - →VUV stops near the surface
 - →Visible light reach the deep part

- VUV-sensitive MPPC
 - Remove the protection coating (epoxy)
 - · Thin down the contact layer

VUV-sensitive MPPC PDE decrease

Normalized Response Response to LED light Response to VUV light 0.95 0.9 [hours at MEG II intensity] Exposure to muon beam 200 Accumulated Exposure 140 120

MPPC Response under muon beam

cf. 16pG22-11(Satoru),16pG22-12(Kei),16pG22-13(Shinji)

- Alpha ray sources are in the detector
 - → Produce VUV scintillation light

• PDE =
$$\frac{\text{N(photon)}_{\text{observed}}}{\text{N(photon)}_{\text{expected}}} \sim 8\%$$

 \rightarrow much lower than that measured in Lab(>15%)

- Degradation of MPPC VUV-sensitivity
 - \rightarrow quite fast ~0.05%/hour (under MEG II beam intensity $7 \times 10^7 \mu/\text{sec}$)
- · MEG II DAQ time (design): 140 days/year, 3 years
 - →This degradation is not negligible
- · A possible cause: Gamma, Neutron irradiation
 - →In lab test, no effect on PDE was observed (at room-temp)

+

Surface damage by VUV light

- Electron-holes are generated in SiO2 by VUV light
- Holes are trapped at interface SiO₂-Si
- The electric field near the boundary of the two surfaces will be reduced by the holes
 - →Collection efficiency will be reduced
- Degradation seems accelerated at low temperature
 - →Holes hardly move

Introduction

- The motivation of searching $\mu \to e \gamma$
- · Overview of MEG II
- Liquid xenon photon detector

MPPC

- VUV-sensitive MPPC
- The mechanism of VUV detection
- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease

- Motivation of the measurement
- Setup
- Result
- Summary

Motivation of the measurement

cf. 17aG22-7(Rina)

PDE degradation of the MPPC was observed in LXe photon detector

- · PDE decrease by VUV irradiation at room-temp was slower than in LXe photon detector
- Gamma, Neutron irradiation has no effect on PDE in previous research at room-temp (Cannot exclude the possibility that the irradiation damage(Gamma, Neutron) at low-temp is different from room-temp)
- To survey the effect of low temperature on the PDE decrease
 - →Compare the PDE decrease at room temperature and low temperature
- To induce and monitor the PDE decrease
 - →Irradiate a MPPC
 - →Read current with no bias voltage (Gain 1)

 (in previous research, correlation between current and PDE was observed)

Setup

- Make vacuum in the chamber for insulation
- Wire carries low temperature from refrigerator
- · ~240K, around the MPPC
 - →Could not reach the LXe temp(165K)

- · MPPC is irradiated through quartz window
 - →Distance : 5cm
- Read 1chip current (MPPC has 4chip)
 - \rightarrow HV=0V
- · Xe flash lamp as a irradiation source
 - →To irradiate with short-wavelength light (~175nm)

Result (HV=0V)

• Irradiated one MPPC (low-temp \rightarrow room-temp)

Result (HV=0V)

- Decrease of current was observed both at low-temp and room-temp
 - →This might show PDE decrease
- The decrease level of low-temperature is smaller than room-temperature
 - →Contrary to expectation
- The result includes the entire wavelength region
 - →Different from VUV irradiation
- The temp (~240K) is much higher than LXe temp (165K)

Summary

Measurement

Room temp(~296K) vs Low temp(~240K)

- Could not reach the <u>LXe</u> temp(165K)
 - →Improve the setup (replace the wire with copper one and improve the insulating performance)
- · Contrary to expectations, current decrease at low temp was slower
 - →We do not know the reason
 - →The possibility that we did not measure the PDE decrease for VUV light (Xe-lamp includes other wave length)
 - →We should measure the charge for VUV light using filters

Backup slides

Result (HV=4V)

room-temperature (296K)

low-temperature (240K)

- · Total irradiation time: ~10h
- · When bias voltage are supplied, low-temperature current seems to decrease
- · The result is opposite to that w/o HV

Result (HV=0V)

- · Irradiated two MPPCs
- Consistent with the result using one MPPC

LED response

- MPPC Vover~6V
- Xe lamp off
- current(LEDon) current(LEDoff)
 to remove the dark current

- Increase of the response to the LED was observed
- · Possibly, there happened to be UV cleaning

 Correlation between current decrease and charge decrease was observed in previous measurement