

MEG II 実験における 背景事象抑制に向けた超低物質量 RPCの読み出しに関する研究

講演番号 19aG22-2

(講演番号 19aG22-1 との連続講演)

山本健介(東大理)

家城 佳^A、大谷 航^A、大矢 淳史、恩田 理奈、他MEGコラボレーション、 越智 敦彦^B

(東大素セム、神戸大理)

日本物理学会第75回年次大会 (2020年)

<u>Outline</u>

- Introduction
 - MEG II
 - RPC
 - Pileup inefficiency
 - Prototype RPC readout
 - Suppress ringing tail
- Lab test
- Summary & prospects

<u>MEG II signal</u>

• MEG II searches for charged lepton flavour violating decay: $\mu^+ \rightarrow e^+ \gamma$

MEG II background

Detect e^+ with low energy (1-5 MeV) from RMD to identify γ from RMD

BG identification detectors

• Radiative decay counters (RDCs) are installed in both upstream and downstream to detect e^+ from RMD

The upstream RDC has strict requirements because it has to be passed through by $7 \times 10^7 \,\mu^+/s$ beam and to detect e^+ from RMD

Upstream RDC requirements

- 1. Material budget: $< 0.1\% X_0$
 - ($\leftarrow \mu^+$ beam passes through the detector)
- 2. 90% efficiency for e^+ with 1-5 MeV
- 3. 1 ns time resolution
 - (\leftarrow RMD identification with time difference b/w $e^+ \& \gamma$)
- 4. Rate capability & radiation hardness ($\leftarrow 7 \times 10^7 \mu^+/s$ with 21 MeV/c & > 60 weeks run)
- 5. Detector size: 20-cm diameter
 - (← 45% acceptance in the one RDC, 90% in total incl. downstream)

→ Candidate for the upstream RDC is ultra-low material resistive plate chamber (RPC)

Proposed RPC design for MEG II

- Gas: R134a (Freon) based
- DLC is used as resistive electrodes
- → Achieve ultra lowmaterial budget
- Aluminised Kapton readout strips are
 - at both anode and cathode
 - orthogonal to each other
- → Readout region is segmented

<u>Pileup of μ^+ beam & RMD e^+ </u>

Requirements for RPC

- 90% efficiency for 1-5 MeV e^+
- Rate capability $(10^8 \mu/s \text{ with } 21 \text{ MeV/c})$

 \blacktriangle : μ^+ in the same strip as RMD e^+

Pileup of high-rate μ^+ beam and RMD e^+ causes inefficiency for RMD e^+

- The segmented design can reduce pileup
- Calculate probability of the pileup
 - &
 at the same region at the same timing
 - & ▲ in the same strip at the same timing

<u>Pileup of μ^+ beam & RMD e^+ </u>

- Calculate pileup probability p_i per readout segmented region as a function of signal duration
- Calculate total pileup inefficiency *P* from p_i

Mar. 2020

• Inefficiency due to pileup is small enough (< 2.0%) if signal duration within 10 ns

Suppress the ringing

- Characteristic impedance of the aluminium strip is estimated at 13.2 Ω
- Co-axial cable with characteristic impedance of 50 Ω will be used for signal transmission b/w the strip and readout electronics
- Possible solutions:
 - Improve impedance matching at preamplifier
 - ← Not easy to place preamplifier near RPC due to limited space
 - Insert resistors to damp the ringing

→ Insert resistors b/w the strip & co-axial cable to damp it

11

<u>Outline</u>

- Introduction
- Lab test
 - Setup and purposes
 - Effect of resistors on ringing
 - Effect of resistors on RPC performance
- Summary & prospects

12

Lab test on effect of resistors

Purposes:

- Examine how much resistors suppress ringing
- Examine how much resistors deteriorate RPC performance

Resistors

<u>Waveform</u>

Inserted resistors

- change ringing tail
- suppress ringing only in summed waveform

- How fast was ringing suppressed?
- How much was ringing suppressed?

Next slide

Analyze height after peak

- Investigate how fast and how much ringing was suppressed
- "Analysis start time" is defined as start time of 20-ns analysis region
- Calculate the ratio of signal height to maximum height in analysis region

Height fraction

- 56 Ω resistors suppressed ringing • little faster than the others
- However, this improvement is not • enough

Height fraction vs Time after peak time

Mar, 2020

MEG || 実験における背景事象抑制に向けた超低物質量RPCの読み出しに関する研究

Height distribution

Mar, 2020

MEG II 実験における背景事象抑制に向けた超低物質量RPCの読み出しに関する研究

Efficiency

Achieve 40% single layer efficiency w/ any resistance

→ 90% four-layer efficiency can be achieved even if inserting resistors according to $\epsilon_n = 1 - (1 - \epsilon_1)^n$

Efficiency vs Resistance

<u>Outline</u>

- Introduction
- Lab test
- Summary & prospects

19

Summary & prospects

• Summary

- Readout w/o resistors generated ringing
- Resistors inserted b/w AI readout strip & LEMO cable change waveform and suppress ringing in summed waveform
- They also made signal height smaller
- Prospects
 - Explain waveform theoretically or by simulation

20

• Optimise readout and resistance

<u>Backups</u>

Physics of $\mu^+ \rightarrow e^+ \gamma$

- Charged lepton flavour violation (cLFV) is forbidden in the standard model (SM)
 - In the SM, $\mathcal{B}(\mu \to e \gamma) < 10^{-50}$
- Some physics models beyond the SM (SUSY-GUT, SUSY-seesaw) say $\mathcal{B}(\mu \to e\gamma)$ is $10^{-11} 10^{-14}$
- MEG experiment gave the upper limit of $\mu \rightarrow e\gamma 5.3 \times 10^{-13}$ for the branching ratio
- $\mu \rightarrow e\gamma$ observation strengthen makes models beyond SM

22

BG properties

- RMD γ is identified from
 - RMD e^+ energy
 - Time correlation b/w $e^+ \& \gamma$

Mar, 2020

MEG || 実験における背景事象抑制に向けた超低物質量RPCの読み出しに関する研究

<u>Pileup</u>

• Calculate pileup probability per readout region in which Al strips overlap

24

Pileup calculation

- P_i : pileup probability per readout segmented region
- ρ_i : probability to detect RMD e^+ in the segmented region (= 2.8 cm)
- Total pileup probability is given by
- $\sum_{strips=256} P_i \rho_i$
- Probability of time difference t b/w continuous μ^+ :
- $p(t) = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right)$, where $\frac{1}{\tau}$ is μ^+ rate in region *i*
- Probability of pileup of μ^+ beam & RMD e^+ in region *i*:

25

• $P_i = 1 - \exp\left(-\frac{t_{dead}}{\tau}\right)$, where t_{dead} is deadtime when we cannot distinguish μ^+ & RMD e^+

Resistance per length

- Surface resistivity $R_S = 1.1 \Omega/sq$
- $\rightarrow R = \frac{R_S}{W} = 110 \,\Omega/\mathrm{m}$
- where W is width of Al strip, that is 1 cm

Property		Units	Aluminum Metallized Polyimide Film Typical Value	
			LR-PI 100AM	LR-PI 200AM
Backing Thickness		μm	25	50
Aluminum Thickness		μm	0.2-0.5	0.2-0.5
Tensile Strength		MPa	≥140	≥130
Elongation		%	≥45	≥45
Shrinkage, at 150°C		%	0.20	0.20
Surface Resistivity	The side of PI Film	Ω	≥1X10 ¹²	≥1X10 ¹²
	The side of Aluminum	Ω	<10 ³	<10 ³

Mar, 2020

MEG II 実験における背景事象抑制に向けた超低物質量RPCの読み出しに関する研究

Capacitance per length

- Think of geometry like this figure
- Ignore DLC plate because DLCs are sputtered on kaptons
- Kapton's relative permittivity $\varepsilon_r = 3.3$
- Give strip charge per length q

Mar,

• From Gauss's raw, electric field is

•
$$q = \varepsilon_0 \varepsilon_r EW \rightarrow E = \frac{q}{\varepsilon_0 \varepsilon_r W}$$
 Al strip W = 1.0 cm
Kapton 1 d = 50 um
Kapton 2 d = 50 um
Gas d = 384 um
Gas d = 384 um
MEG II 実験における背景事象抑制に向けた超低物質量RPCの読み出しに関する研究 Al pad 2

Capacitance per length

- From the field, potential diff b/w Al strip and Cu pad is
- $V = \int_0^d \frac{q}{\varepsilon_0 \varepsilon_r W} dx = \frac{qd}{\varepsilon_0 \varepsilon_r W}$
- From $V = \frac{q}{c'}$
- $C_i = \frac{\varepsilon_0 \varepsilon_r W}{d}$

Mar, 2020

- From $C_i = \frac{\varepsilon_0 \varepsilon_r W}{d}$, where C_i is capacitance per length in layer i
- Total capacitance C = 202 pF/m

Inductance per length

- Think of geometry like this figure
- Assume current *J* flows only in Al strip (No current in Cu pad)
- From Ampere's raw, magnetic field is

•
$$2W\mu B = J \rightarrow B = \frac{\mu J}{2W}$$

• Permeability $\mu = \mu_0$

Inductance per length

• Magnetic flux Φ is

•
$$\Phi = \int \frac{\mu_0 J}{2W} dS = \frac{\mu_0 J}{2W} d$$

• From Φ , calculate V, L

•
$$V = -\frac{d\Phi}{dt} = -\frac{\mu_0 d}{2W} \frac{dJ}{dt} = -L \frac{dJ}{dt} \rightarrow L = \frac{\mu_0 d}{2W} H/m$$

• $L = 35 \text{ nH/m}$
Al strip W = 1.0 cm
Kapton 1 d = 50 um
Kapton 3 d = 50 um
Gas d = 384 um
Kapton 4 d = 50 um
K

Characteristic impedance

- Need to consider resistance *R* because we cannot ignore loss
- Characteristic impedance is

•
$$|Z_0| = \sqrt{\frac{R^2 + (\omega L)^2}{(\omega C)^2}}$$

- where ω is angular frequency
- Assume signals are triangle waves whose width is 4 ns
- In this case, assume $\omega = 785 \text{ rad}/\mu \text{s}$

•
$$\rightarrow |Z_0| = \sqrt{\frac{R^2 + (\omega L)^2}{(\omega C)^2}} = 13.2 \,\Omega$$

Reflection

- Characteristic impedance of Al strip: $Z_{s} = 13.2 \Omega$
- Characteristic impedance of LEMO cable: $Z_0 = 50 \Omega$
- Reflection coefficient $r = \frac{Z_0 Z_S}{Z_0 + Z_S} = 0.58$
- In lab test, $r \sim 0.21 \leftarrow$ Smaller than expectation

Both readouts w/o resistors

- Sum waveform up when readout from both sides of strip
- In some events, height is over threshold by summing up
- → Efficiency:
 - Ch 0: 40.2%
 - Ch 2: 42.5%
 - Ch 3 (sum): 49.0%

Both readouts w/o resistors

Mar, 2020

MEG II 実験における背景事象抑制に向けた超低物質量RPCの読み出しに関する研究

34

Both readouts w/o resistors

