

Core-to-Core Program

MEG II実験感度向上へ向けた 高レート耐性RPCでの パイルアップ抑制

山本健介 (東大理)

家城 佳^A、大谷 航^B、大矢 淳史、越智 敦彦^C、恩田 理奈 (東大理、東大宇宙線研^A、東大素セ^B、神戸大理^C)

2021年9月14日(火) 2021年日本物理学会秋季大会

14 Sep. 2021

MEG II and RDC

 $ar{
u_{\mu}}$

 μ^{\pm}

 ν_e

Tagged

(~52.8 MeV)

- MEG II searches for $\mu \rightarrow e\gamma$ decay
- . RDCs are detectors to tag BG- γ from Radiative Muon Decay (RMD)

14 Sep. 2021

<u>Outline</u>

- Introduction
- Pileup suppression
 - Strategies for pileup suppression
 - Pileup probability calculation
 - Optimise strip configuration
 - Ringing suppression
- Summary

14 Sep. 2021

Detect e^+ in high-intensity μ^+

- . The RPC detects e^+ in MEG II μ beam at 1×10^8 /s
- The RPC faces problems
 - Performance degradation ← referred in previous talk
 - . Pileup of e^+ and beam $\mu^+ \leftarrow$ this talk
- Goal of pileup suppression:
 - 1% level of RMD e^+ inefficiency
 - Required efficiency of $e^+ = 90\%$

- Inefficiency by inactive region = 4.1%
- Expected detection efficiency ~ 94%

Pileup suppression of high-rate capable RPC

14 Sep. 2021

aiming at sensitivity improvement of MEG II experiment

Strategies for pileup suppression

1 - Segment readout region

The configuration must be optimised

- Virtual cells by X, Y strips
 - X strips at the top side
 - Y strips at the bottom side

Ringing observed with prototype detector must be suppressed

- Possible cause
 - Reflection
 - Resonance
- Time: ~50 ns
- Height: ~25% of main pulse height

Pileup suppression of high-rate capable RPC

14 Sep. 2021

aiming at sensitivity improvement of MEG II experiment

Calculation of pileup inefficiency

- . μ and e can be separated
 - The responses at single layer were measured
- Pileup pattern
 - . μ and e in the same cell (\blacksquare & \bigcirc)
 - μ , μ , and e in the same strip (\blacksquare & \blacktriangle)
- Pileup definition

Expected pulse height spectra

14 Sep. 2021

Calculation of pileup inefficiency

Optimise strip configuration

Narrower as closer to the centre to reduce the inefficiency around the centre

Pileup inefficiency per cell Y position [cm] 0.06 0.05 6 0.04 5 0.03 0.02 0.01 0 8 10 2 6 4 X position [cm] ~7%

Total pileup inefficiency = 2.9%

14 Sep. 2021

Pileup suppression of high-rate capable RPC

aiming at sensitivity improvement of MEG II experiment

Ringing dependence

14 Sep. 2021

<u>Suppressed pileup inefficiency</u>

- 0.83% inefficiency will be achieved under the conditions as follows:
 - Ringing time < 20 ns •
 - Ringing height < 10% of pulse height
 - 20 strips configuration

14 Sep. 2021

Ringing suppression test

Readout strip setups

Copper tapes were on the both ends of Al strip so far Al strip and board are connected with conductive glue

Ringing cause

In the measurement box

oop back

- Loop back b/w readout strip and amplified RPC signal occurs
- Ringing was suppressed by getting amplifiers out

Other factors

- Reflection at amplifier
 - Shape pulse at ~10 ns are caused by reflection at amplifier
- Characteristic impedance of readout strip
 - The impedance is determined by
 - Width of a strip
 - Distance b/w both sides of strips
 - Preferable for the impedance to be 50 Ω

Height

Pileup suppression of high-rate capable RPC

aiming at sensitivity improvement of MEG II experiment

14 Sep. 2021

14

Comparison with layers

- The MEG II RPC will have 4 layers
- Longer ringing occurred with 4-layer configuration
 - Noise from other causes?
 - Complex wiring must be controlled
- Further suppression is needed

aiming at sensitivity improvement of MEG II experiment

<u>Outline</u>

- Introduction
- Pileup suppression
 - Strategies for pileup suppression
 - Pileup probability calculation
 - Optimise strip configuration
 - Ringing suppression
- Summary

14 Sep. 2021

Summary & prospects

- High-rate capable RPC with DLC electrodes is under development for MEG II upstream RDC
- Pileup of beam μ^+ and RMD e^+ will be suppressed at 1% level of e inefficiency
 - Segment readout region by placing strips vertically with optimised strip configuration
 - Shorten signal duration by ringing suppression
- Further ringing suppression will be studied with
 - 4-layer configuration
 - Multi strip configuration

14 Sep. 2021

14 Sep. 2021

MEG II signal and background

- MEG II searches for $\mu \to e\gamma$ decay, one of charged lepton flavour violation (cLFV) channels
- Dominant background is accidental coincidence of $\mathrm{BG}\text{-}e^+$ and $\mathrm{BG}\text{-}\gamma$

Radiative Decay Counter

 $ar{
u}_{\mu}$

U.

 \mathcal{V}_{ρ}

Tagged

(~52.8 MeV)

- Radiative Decay Counter (RDC) detects RMD e^+ with 1-5 MeV to tag BG- γ
- RDCs will be installed at both upstream and downstream of target
- Upstream RDC is under development

Requirements for upstream RDC

- 1. <0.1% X_0 material budget
 - . μ beam with 28 MeV/c must pass through the detector
- 2. 90% efficiency for RMD e^+ with 1-5 MeV
- 3. 1 ns timing resolution
- 4. Rate capability and radiation hardness for $10^8 \mu/s$
- 5. 20-cm diameter detector size

Candidate: <u>Ultra-low mass Resistive Plate Chamber</u> (RPC) with Diamond-Like Carbon (DLC) electrodes

14 Sep. 2021

RPC with DLC technology

- Diamond-Like Carbon (DLC) is
 used as resistive electrodes
 - DLC is sputtered on polyimide foil
 - Small material budget can be achieved
 - DLC resistivity is adjustable
 - Small resistivity can be achieved, which is important for rate capability

sp²

- MEG II RPC design
 - 4 layers ← Higher efficiency
 - $\epsilon_n = 1 (1 \epsilon_1)^n$
 - . <0.1% X_0 material budget
 - . 50 μ m Polyimide foil \rightarrow 0.018% X_0
 - 100 nm aluminium \rightarrow 0.0012% X_0

14 Sep. 2021

sp³

Pileup suppression of high-rate capable RPC

aiming at sensitivity improvement of MEG II experiment

RPC prototype detector

- Prototype detector performance for MIP
 - Operated with ultra-low mass design
 - Efficiency is dependent on applied HV
 - 60% efficiency is achieved with single-layer configuration
 - 90% efficiency is achievable with 4-layer configuration
 - 190 ps timing resolution

14 Sep. 2021

Pulse height spectra of μ and e

20 strips configuration

24 strips configuration

<u>Amplifier</u>

14 Sep. 2021