

MEGII実験液体キセノンγ線検出器内の真空紫外光に 感度のあるMPPCにおけるPDE減少の放射線源を用いた 調查

Research on PDE decrease of MPPC for MEG II liquid xenon photon detector by using radiation source.

Keisuke Yoshida, on behalf of MEGII collaboration The university of Tokyo 14th Sep. 2021

14pT3-7

Core-to-Core Program

Contents

- Introduction of MEGII
 - • μ \rightarrow e γ search
 - Overview of MEGII
- PDE decrease of VUV-MPPC
 - Decrease of PDE
 - Results we have researched until now
 - Suspecting cause
- Experiment
 - Setup of irradiation and PDE measurement
- Results and summary

$\mu \rightarrow e\gamma$ search

- $\mu \rightarrow e\gamma$ decay is charged lepton flavour violation (CLFV).
- Almost forbidden in Standard Model $(Br (\mu \rightarrow e\gamma) \sim 10^{-54}).$
- However, it is predicted to occur in some theories (Br $(\mu \rightarrow e\gamma)$:10⁻¹¹-10⁻¹⁴).
- MEG experiment gives the current upper limit of Br $(\mu \rightarrow e\gamma)$

Br $(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13} (90\% \text{ C.L.})$

MEGII experiment **Overview**

- MEG II experiment aims to detect $\mu \rightarrow e\gamma$, which is CLFV.
- Conducted at Paul Scherrer Institute (Switzerland).
- Upgraded detectors compared to that of MEG experiment.
- Using 7×10^7 /s continuous μ beam, MEG II will reach Br ($\mu \rightarrow e\gamma$) ~ 6×10^{-14} .

MEGII experiment Liquid xenon photon detecter(LXe)

- In LXe, energy, position and timing of γ are measured.
- Detect the scintillation light (λ ~175nm).
- Use 4092 VUV-sensitive MPPCs (newly installed) and 668 PMTs.
- Energy and position resolution will be improved compared to MEG.

MPPCs

PDE decrease of VUV-MPPC

PDE decrease of VUV-sensitive MPPC

- PDE (photon detection efficiency) decrease of VUV (vacuum ultra violet)-MPPC is quite fast (~ 0.06% /h in MEG II beam intensity).
- MEG II DAQ time: 120 days/year, 3years => PDE decrease is crucial problem.
- Annealing (heating) is effective to recover the decrease.
- But cause of the decrease is unknown.

Photon Detection Efficiency

- The speed of PDE decrease has dependence of VUV-MPPC's position.
 => Cause of the decrease may come from target.
- Possible causes : VUV, γ

horizontal: position of MPPCs(US: upstream, DS: downstream) red: PDE of each MPPCs black: VUV photon fluence of those blue: γ rays dose of those

Results we have researched until now

- Researched on some causes at different temperature.
- PDE decrease was not observed in these experiment.
- => Researched on γ ray at low temperature (165K) this time.

ated sample	Irradiated condition	Result
VUV	at room temperature	observed but too slo
	at low temperature (165K)	not observed
ray	at room temperature	not observed
	at low temperature (165K)	

Suspecting process of the decrease Surface damage

- γ deposits energy in Si layer and produce e- and e+.
- e- and e+ damage Si-passivation layer interface and make holes.
- The electric field near the boundary of two surface is reduced and collection efficiency of photon reduces.
- Annealing is effective to recover PDE (may remove holes).

Preparation Setup of irradiation

- Used β ray source to reach the γ dose in MEG II DAQ in Laboratory.
- Temperature of irradiated MPPC was kept at 165K (equals to that of LXe).
- Setup was screened from light.
- Distance between irradiated MPPC and β source was 7.6cm.
 => Dose in 5h irradiation is 6mGy
 ~ Dose of some MPPC in MEG II 3 years' DAQ.
- MPPC HV = 0V

Preparation Setup of PDE measurement

- PDE was measured by UV
 (~190nm) and LED (~460nm).
- Relative positions of lamps and MPPC are fixed.
- Temperature at the measurement: 22°C (constant).

Thermostatic chamber

Result

- PDE decrease was not observed in this experiment
- Dose of 5h is equivalent to MEG II 3 years' DAQ
- If PDE decrease occurs at the same speed observed in LXe, PDE will decrease 100% in 1h irradiation.

Relative charges(UV:wavelength~190nm)

Error : considered the standard deviation

10

Results **Slower irradiation**

- The previous irradiation was too fast compared to the situation in MEG II.
- So irradiated β rays to MPPC slower than the previous experiment (i.e. irradiation distance 7.6cm => 40cm).
- Dose of 9h irradiation is equivalent to that in 3 week MEG II DAQ.
- PDE decrease was not observed in this experiment.
- PDE will decrease 30% in 9h irradiation if it decrease at the same speed in LXe.

Error : considered instability of the UV lamp and the MPPC

11

Summary

- MEG II experiment aims to detect $\mu \rightarrow e\gamma$ decay.
- PDE decrease of VUV-MPPC in LXe is crucial problem.
- We have researched many causes as the PDE decrease.
- Researched γ this time as the cause of it, and the decrease was not observed.
- We don't have other candidates for PDE decrease now, but continue to research the cause.

VUV-MPPC

Normal SiPM

 insensitive to VUV lights because the protection layer and thick p+ layer absorb VUV lights before they reach player

VUV-MPPC

Quartz window

- quartz window to protect its surface instead of the protection layer
- thinner p+ layer

HV on/off and u dependence

DAQ setup this year.

Results (LED)

PDE decrease(2019,room temp)

Relative Charge during Irradiation

- Intensity:5.2e13/mm^2/h@ λ ~190nm
- Total dose:3.1e16/mm^2/
- Decrease of VUV-MPPC saturated at 35%.
- Speed of decrease is 1000 times slower than that of observed in LXe.
- That of standard MPPC saturated at 70%.
 - annealing in room temp.: 11% in 12days=>3.82%/100h

PDE decrease(2020, low)

•	UV	
	tha	ľ
	۰L	

	Xe-lamp	MEG II LXe
Total dose level	4.5e16 photon	4.4e12 photon
PDE decrease	14.8%(UV)	9%(VUV)

PDE decrease at low temp was larger n at room temp Low : 14.8% · Room : 10.4%

 At low temp, UV PDE decrease was larger than visible · UV : 14.8% • Visible : 5.2% $\cdot N_{phe,VUV} = 60p \cdot e \cdot /mm^2 \cdot pulse$ $\rightarrow N_{pho,VUV} = 400 \text{photon/mm}^2 \cdot \text{pulse}$ if PDE = 15%

4chip Filters Lamp freq

$$\rightarrow N_{pho,VUV} = 400 \times 144 \div (0.25)^2 \times 500 \text{Hz} \times \left(\frac{3\text{mm}}{1\text{mm}}\right)^2 \times \left(\frac{42\text{cm}}{3\text{cm}}\right)^2$$

 $= 2.1 \times 10^{12} \text{photon/ch} \cdot \text{sec}$

$$\cdot N_{pho,2019} = 1.0 \times 10^{13} - 2.5 \times 10^{13}$$
 photon/ch

It will take ~10sec to reach 2019 run at low-temp

PDE decrease(2020,room)

relative photosensitivity

PDE decrease(2020,low)

- Observed VUV charge by using N₂ gas
 - Absorption cross section of 175 nm is largely different b/w O₂ and N₂

PDE_{after}/PDE_{before}

		chip 1	chip 2	chip 3	chip 4	4			
	Reference	1.06	1.07	1.11	1.08				
	Irradiated	1.16	1.17	1.17	1.15				
ence) ated)	$\cdot N_{VUV}$: Dose level in this measurement $\cdot N_{2019,VUV}$: Dose level in LXe detector in 2019								
harge 185 nn	• Dose level (in 21 • $N_{VUV} = 1.7 \times$ $= N_{2019,7}$ \rightarrow Corresponde	h) : 160 nm $\lesssim 7$ 10 ¹¹ photon/mi $_{VUV} \times 3.3$ s to ~ 30% decre	$l \lesssim 185 \text{ nm}$ m^2						
	• VUV-PDE decrease was not observed Mean free path								
		160 nm	165 nm	17	′5 nm	1 78 nm			
	$O_2 = 20.9 \%$	0.04 cm	0.24 cr	n 0.6	64 cm	48 cm			
250	$O_2 = 10 \%$	0.08 cm	0.5 cm	n 1.3	34 cm	100 cm			
	$O_2 = 0.1 \%$	0.8 cm	5 cm	13	.4 cm	1000 cr			
	$O_2 = 0.04 \%$	20 cm	12.5 cr	n 34	4 cm	2500 cr			

-

Xe-lamp, Bandpass filter

●分光放射強度(代表値)

Hamamatsu 5W Xe-lamp(L9456-01) window material: UV glass wave length:185nm~2500nm

eSource Optics VUV Bandpass filter(25172FNB)

Result of MPPC stability

- I estimated error of irradiation experiment by result of MPPC stability experiment because that is same situation to irradiation experiment.
- Experimet : MPPC1 was moved out when the charge was not measured, and the another(MPPC2) was not moved out.
- Evaluated error as the (deviation of relative charge MPPC1/MPPC2)/($\sqrt{\text{sample size}=4}$).

Monitored time(h)

