

Evaluation of Timing Resolution of MEG II Liquid Xenon Detector

14/03/2021, 14aT2-3

Rina Onda on behalf of MEG II Collaboration

The University of Tokyo

y Detector of MEG II Experiment

Inside LXe

- MEG II experiment searches $\mu \rightarrow e_{\gamma}$ decay, which is one of charged Lepton Flavor Violation.
- Liquid xenon photon detector (LXe) detects energy, position and timing of γ .
- Scintillation lights from liquid xenon are detected with PMTs and MPPCs.
- In this talk, the current status of evaluation of the LXe timing resolution will be reported.

Evaluation of Timing Resolution

The timing resolution can be evaluated with two methods:

- 1. Absolute resolution
 - \blacktriangleright Use coincident 2 γ -rays from π^0 decay
 - \blacktriangleright Measure the timing of another γ with a reference counter
- 2. Intrinsic resolution
 - Use single γ-ray
 - \blacktriangleright Reconstruct γ timing with a half of channels (even, odd) separately

Previous Studies and Updates

- The intrinsic timing resolution has been evaluated with γs from μ beam.
- In 2019, ~40 ps was achieved for γ s above 47 MeV. \leftarrow 30% improvement from MEG I
- The intrinsic timing resolution can be better than the absolute resolution because some effects can be reduced by even-odd subtraction:
 - Error from position reconstruction
 - Spread of shower
 - Coherence of electronics such as noise and synchronization
 - \rightarrow The absolute timing resolution must be evaluated.
- In 2020, we performed DAQ for evaluation of the absolute timing resolution.
- This is the first result about the absolute timing resolution of LXe for the MEG II experiment.

 $(T_{\rm even} - T_{\rm odd})/2$

Evaluation of Timing Resolution with CEX

- The absolute timing resolution can be evaluated using backto-back γ -rays from charge exchange reaction of π^{-} : $\pi^{-} p \rightarrow \pi^{0} n, \pi^{0} \rightarrow \gamma \gamma$
- The pre-shower counter was placed in the opposite side of LXe to measure the reference timing.
- LXe timing resolution can calculated using time difference with the pre-shower counter by

$$\sigma_{\text{LXe}} = \sigma(T_{\text{LXe}} - T_{\text{ref}}) \ominus \sigma_{\text{ref}}$$
$$T_{\text{ref}} = T_{\text{ps}} + T_{\text{TOF}}$$
$$\sigma_{\text{ref}} = \sigma_{\text{ps}} \oplus \sigma_{\text{vertex}},$$

where T_{ps} is the measured timing and σ_{ps} is the contribution of the pre-shower counter, T_{TOF} is the time of flight, σ_{vertex} is the uncertainty of the vertex position.

Pre-shower Counter

- The pre-shower counter consists of two plastic scintillators readout by 16 SiPMs (8 SiPMs \times 2 sides) respectively.
- The two scintillators were placed orthogonally in the front of the BGO calorimeter.
- A Pb converter with 4 mm thickness was placed in the front to convert γ -rays.

Pre-shower Timing Resolution

Position Dependence of Timing Resolution

- Time resolution can be evaluated by time difference of two plates. ٠
- Overall time resolution: ~36.8 ps. ۲
- Position dependence is smaller than 5 ps in the 40×40 mm² analysis region. ۲

Uncertainty from Vertex

- TOF is corrected assuming π_0 decays at the vertex center. \leftrightarrow The vertex distributes with a certain width.
- The contribution from the vertex uncertainty can be estimated using MC.
- The estimation was done calculated based on the measured beam profile:
 - vertex center: (x, y, z) = (0, 0, 6.8 cm)
 - vertex size: $(\sigma_x, \sigma_y, \sigma_z) = (7.6 \text{ mm}, 6.8 \text{ mm}, 10 \text{ mm})$
- The uncertainty is 48.4 \pm 1.6 ps.

Uncertainty from TOF Estimation

Timing Reconstruction of LXe

The timing of γ hit, t_{v} , is reconstructed with χ^{2} minimization fit:

$$\chi^{2} = \sum_{\rm pm} \frac{(t_{\rm pm} - t_{\rm corr} - t_{\gamma})^{2}}{\sigma_{\rm pm}^{2}}$$
$$t_{\rm corr} = t_{\rm prop} + t_{\rm walk} + t_{\rm offset}$$

 $t_{
m pm}\,$: the extracted timing of each photosensor

 $t_{\rm prop}\,$: the propagation time from $_{\rm Y}$ hit position to each photosensor

 $t_{
m walk}$: the time walk effect

 $t_{
m offset}$: the time offset from electronics and cable length

 $\sigma_{\rm pm}$: the timing resolution of each photosensor

Timing Calibration

The correction parameters are estimated beforehand using the timing of the pre-shower counter as reference.

- 1. The time walk effect was extracted from the time difference of $\mathbf{t}_{pm} \mathbf{t}_{prop} \mathbf{t}_{ref}$ as a function of $1/\sqrt{N_{phe}}$. (N_{phe} : the number of photoelectrons)
- 2. The time offset t_{offset} was defined by the mean of the time difference of $t_{pm} t_{prop} t_{walk} t_{ref}$.
- 3. The channel timing resolution was defined by the uncertainty of the time difference of $t_{pm} t_{prop} t_{walk} t_{offset} t_{ref}$ as a function of $1/\sqrt{N_{phe}}$.

Timing Resolution @ 55 MeV

Intrinsic Resolution **Absolute Resolution 400** h_timeDif4 h timeDif2 Entries 3729 350 Entries 3729 1.037e-12 Mean 500 ·3.844e--11 Mean Std Dev 4.215e-11 300 Std Dev 1.107e-10 400 250 38.5 ps 102.1 ps 200 300 150 200 100 50 100 ∃×10^{_9} 0 ×10⁻⁹ -0.20.2 0.4 -0.40 <u>0</u><u>2</u> $(T_{even} - T_{odd})/2$ (sec) -1 0 $T_{xec} - T_{ref}$ (sec)

- The intrinsic timing resolution was 38.5 ps, which is consistent with the previous result.
- The absolute timing resolution was 82.0 ps after subtracting $\sigma_{\rm ref} = \sigma_{\rm ps} \oplus \sigma_{\rm vertex} = 36.8$ ps \oplus 48.4 ps.

Discrepancy of Timing Resolution

- The absolute timing resolution can be worse than the intrinsic resolution because some effects can be reduced by the even-odd subtraction:
 - Error from position reconstruction
 - Spread of shower
 - Coherence of electronics such as noise and synchronization
- The difference between the absolute and intrinsic resolution can be 42.5 ps according to MC.
 - \leftrightarrow 72.4 ps for data

Timing Resolution ($E_{\gamma} = 55$ MeV)

	Intrinsic	Absolute	Absolute
Data	38.5 ps	82.0 ps	72.4 ps
МС	38.4 ps	57.3 ps	42.5 ps

Possible Cause of the Discrepancy

The cause of the discrepancy is under investigation.

- 1. Some effects are erased by even-odd subtraction.
 - Electronics noise, synchronization, calibration
 - Bias from analysis
- 2. Some effects are added to the absolute timing resolution.
 - Vertex uncertainty

 \succ If the size of vertex is larger than expected, the uncertainty of vertex becomes larger.

 \succ (σ_x , σ_y , σ_z) = (7.6 mm, 6.8 mm, 10 mm) \rightarrow (11 mm, 11 mm, 10 mm), for example

• Timing resolution of pre-shower counter

 \succ Not likely because the timing resolution is consistent b/w Sr90 and γ results.

Effect of Synchronization

- The 8 channels are readout with one electronics' chip.
- The chips are synchronized using clock waveforms.
 - The precision of synchronization b/w two chips was measured to be σ_{sync} ~45 ps.
 - In addition, the precision of timing calibration of electronics within one chip was measured to be $\sigma_{calib} \sim 25$ ps.

To estimate the effect of synchronization, the timing was reconstructed adding the fluctuations to MC:

$$\begin{split} t_{\text{pm, sync}} &= t_{\text{pm, truth}} + \text{Gaus}(t_{\text{chip}}, \ (\sigma_{\text{sync}} \bigoplus \sigma_{\text{calib}})/\sqrt{2}) \\ t_{\text{chip}} &= \text{Gaus}(0, \ \sigma_{\text{calib}}/\sqrt{2}) \end{split}$$

The resolution gets worse as the precision of synchronization gets worse.

• The effect can be ~7 ps (@ σ_{sync} ~ 45 ps). → small effect: 82.0 ps → 81.7 ps

Expected Sensitivity

- The current absolute timing resolution is ~81.7 ps, which is worse than that of MC.
- The worse timing resolution can deteriorate the sensitivity by ~10%.

Summary

- CEX DAQ was performed in 2020.
- The timing resolution of LXe was evaluated to be
 - Absolute: 81.7 ps
 - Intrinsic: 38.5 ps
- The absolute timing resolution was worse than expected.
- The cause of the discrepancy is under investigation.
- If the resolution cannot be improved, it can deteriorate the sensitivity by ~10%.

Backup Slides

TOF Correction

- The time of flight was calculated using the reconstructed hit positions of LXe and the pre-shower counter.
- The vertex is assumed to be the beam center.

Time Walk of Pre-shower

Synchronization of Electronics

- Signals generated with a function generator were divided and input to 8 channels on several chips.
- The precision of synchronization can be calculated by StdDev of time difference of two channels.
- After clock analysis, the precisions of synchronization became 40-50 ps.
- Synchronization works well.

Energy Dependence

- The timing resolution improves as the number of photoelectrons increases.
- The improvement of the absolute timing resolution is limited.

Uncertainty from Vertex

- The contribution from the vertex uncertainty can be estimated using MC.
- It was estimated to be 58 \pm 2 ps in MEG.
 - (x, y, z) = (0, 0, 0)
 - $(\sigma_x, \sigma_y, \sigma_z) = (1 \text{ cm}, 1 \text{ cm}, 1 \text{ cm})$
- The estimation was done with the configuration of this year.
 - (x, y, z) = (0, 0, 6.8 cm)
 - $(\sigma_x, \sigma_y, \sigma_z) = (1.1 \text{ cm}, 1.1 \text{ cm}, 1 \text{ cm})$
- The uncertainty is 70.8 \pm 2.7 ps.

Uncertainty from TOF Estimation

Absolute — Intrinsic

- We have seen the difference b/w the absolute and intrinsic timing resolutions is not constant both for data and MC.
- The difference of data is consistently larger by ~60 ps except for lot A, lot C and outer.