MEG II実験における大強度µ粒子ビーム中での運用を 見据えた超低物質量RPCのレート耐性の研究(2)

大矢 淳史(東大理^A)

家城佳(東大素セ^B),大谷航^B,越智敦彦(神戸大理),恩田理奈^A,山本健介^A

Contents

Introduction

- Measurement with high rate μ beam
 - Setup
 - Height spectra
 - Evaluated voltage drop
- Projection to MEG II performance
- Summary and prospect

(Measured without dependence on rate-capability)

(See the slide for the previous talk for detail)

Introduction: Rate capability of RPC

- Amplified electron-ion pairs flow out on the resistive electrodes
 - Large current is generated when hit rate is high
 - The current cause voltage drop: $\Delta V = R \cdot I$
 - RPC's performance get worse with lower effective voltage
- Geometry of flowing current must be taken into account
 - Current flows on the surface of the DLC electrodes

Contents

Introduction

• Measurement with high rate μ beam

- Purpose
- Setup
- Height spectra
- Evaluated voltage drop
- Projection to MEG II performance
- Summary and prospect

Purpose of test with high-rate beam

- Reminder of RPC's use in MEG II
 - Detection of MIP in high-rate muon beam
- Purpose of test with high-rate beam
 - RPC's performance in high-rate environment
 → To be measured for our RPC for the first time
 - 2. Check whether ΔV effect reasonably explains the RPC's performance in high-rate beam
- MEG II beam line is used
 - Beam is not collimated, unlike the previous talk

Setup: Detail of RPC structure

• The same prototype as that mentioned in the previous talk

Measurement set up with high-rate beam

Pulse height spectra with high-rate beam

- Beam profile
 - Total beam rate: $2 \times 10^7 \ \mu/s$
 - Beam size: $\sigma_x = 13$ mm, $\sigma_y = 23$ mm
- Operating voltage: 2.75 kV
 - Current: Read as 6.5 μ A

Off-timing; Mostly pedestal.

Beam muon also enter at some probability

Blue: Pulse height spectra for fixed off-timing analysis window: pedestal + Beam muon Red: Pulse height spectra for triggered timing analysis window; Mostly Michel, w/ accidental

Comparison with measurements at low-rate

- Voltage drop effect appears
 - Distribution looks as that of 2.6 2.65 kV
 - Operated @2.75 kV → ~100 V drop

Interpretation of the results

- Voltage drop is observed at high rate
 - Estimated effective voltage: 2600 2650 V
 - Nominal applied voltage: 2750 V
- Voltage drop is estimated to be 100 150V: This can be understood with $\Delta V = R \cdot I$
 - $R = 20 30 \text{ M} \Omega$: Determined by
 - DLC's surface resistivity
 - Geometry of the flowing current
 - $I = 6.5 \ \mu$ A: Current generated from avalanche charge

Contents

Introduction

• Measurement with high rate μ beam

• Projection to MEG II performance

- Method on projection
- Avalanche charge evaluation for low momentum μ
- Expected performance
- Summary and prospect

Strategy of rate capability study

- The test condition with high-rate beam is different from MEG II
 - Prototype detector with a size smaller than required one
 - Beam profile is different
- $\Delta V = R \cdot I$ evaluation for MEG II is needed
 - *I* is determined by
 - 1. Average charge in avalanche (Magnitude of current)
 - 2. The beam profile (Distribution of current source)
 - *R* is determined by
 - 1. Surface resistivity of DLC
 - \rightarrow > ~10 M Ω /sq is needed to suppress discharge

 - 2. HV supply arrangement
 → Candidate: 2 cm pitch strip-shaped HV supply
- I evaluation is the topic of the remaining talk
 - Beam profile with $\sigma = 20$ mm
 - Average charge evaluation

Avalanche charge evaluation

Expected performance in MEG II

- Result
 - $\Delta V \sim 100 \ \vee$
 - \rightarrow Effective voltage is 2.65 kV
 - Single layer efficiency is measured to be >40% with 2.65 kV
 - → 90 % efficiency is achievable with 4-layers
 - $(1 \epsilon_n = (1 \epsilon_1)^n$: ϵ_n is n-layer efficiency)

Contents

Introduction

- Measurement with high rate μ beam
- Projection to MEG II performance
- Summary and prospect

Summary and Prospect

- Rate capability of RPC in MEG II experiment is studied
 - RPC is operational even in MEG II beam
 - But with some uncertain assumptions
- Studies are needed on the uncertain assumptions

2cm pitch HV supply with 100 μ m width each (Formation technique has not been established)

 $10M\Omega/sq$ DLC (Smaller resistivity results in discharge)

Is this design really feasible ?

Backup

MEG II signal and background

- MEG II will search for $\mu \rightarrow e \gamma$ decay
 - Identified by energy, timing and direction of e and γ
- Dominant source of background is accidental coincidence of BG-e and BG-γ mimicking the signal
 - One of the dominant source of BG- γ is radiative muon decay

Background identification detector

- Detectors to tag BG-γ from radiative muon decay
 - Detect low energy positron (1-5MeV) accompanying BG γ (~52.8MeV)
- Planned to be installed to 2 positions
 - Upstream and downstream of the target
 - MEG II sensitivity
 - 2—9%(study ongoing) improvement with upstream (Only t measurement)
 - 10% improvement with downstream (E and t measurement)
 - Upstream one is under development
 → Today's talk

Requirements to the upstream detector

- 1. $< 0.1\% X_0$ material budget (beam must pass through the detector)
- 2. 90% efficiency for 1-5 MeV positron
- 3. 1 ns timing resolution (RMD identification with the timing difference b/w positron & γ)
- 4. $\frac{10^8 \ \mu/s}{\mu/s}$ capable high rate performance and radiation hardness (10⁸ μ/s with 21 MeV/c , >60 weeks run)
- 5. 20 cm (diameter) detector size (45% acceptance…total 90% incl. DS)
- → Candidate: Ultra low-material RPC detector using Diamond Like Carbon (DLC)

RPC based on DLC technology

- RPC: Gaseous detector with high resistive electrodes placed face to face
 - Gas: R134a (Freon) based
 - Gap thickness: $200 \,\mu$ m 2 mm

Performance of conventional RPC

- time resolution < ns
- material: 1% X₀ → must be improved
- Efficiency ~90[™] → still requires study
- rate ~kHz/cm² → must be improved

- Diamond Like Carbon(DLC) is used for resistive electrodes
 - DLC: high resistive material w/ mixed structure of sp² bond and sp³ bond
 - Advantages of DLC
 - 1. Iow material \rightarrow Sputter DLC on 50 μ m Kapton
 - 2. Adjustable resistivity
 - → Resistivity must be optimized for high rate environment (Resistivity must be low to achieve high rate capability)
 - 3. Multiple layers with lower voltage than conventional ones (next page)
 - Development initiated by a group of Kobe Univ

DLC: chemical structure

Proposed design of RPC for MEG II

- Readout: Al
 - → aluminized Kapton will be used on the top & bottom

- High efficiency can be achieved by multilayer design
 - n-layer efficiency: $\epsilon_n = 1 (1 \epsilon_1)^n$
 - From requirement on material budget, 4 layers at maximum

Material budget

- Kapton 50 μ m \rightarrow 0.018 % X₀
- AI 100 nm × 2枚→ 0.0023 % X₀

 \rightarrow < 0.1 % X₀ is achievable

ビームμとか

●粒子の拡がり ✓ビームの拡がりはσ=2 cm ✓輻射崩壊陽電子は 2.8 cm

Result: Timing resolution for single layer

- Single layer timing resolution is measured changing the gap thickness
 - (Normally, 4-layer resolution is better)
- Timing resolution
 - Determined from the timing difference b/w RPC and reference counter
 - RPC timing: 50% constant fraction ullet

Timing resolution is good enough at least up to $520 \,\mu$ m (< 1ns required)

At least, gap thickness can be b/w 370 μ m and 520 μ m

timing resolution vs electric field

Result: Detection efficiency for single layer

- Single layer efficiency is measured changing the gap thickness
 - 40% single layer efficiency is required to achieve 90% w/ 4-layer
 - $\epsilon_n = 1 (1 \epsilon_1)^n$
 - For each thickness, measured changing the operating voltage
- Efficiency
 - Determined from the fraction of RPC hits in the triggered events
 - RPC threshold = 10 mV

sufficient efficiency for $\geq 370 \,\mu$ m thickness

