機械学習を活用した 高計数率ドリフトチェンバー のヒット再構成

High-rate drift chamber hit reconstruction with machine learning technique

研究拠点形成事業 Core-to-Core Program

内山雄祐 (The University of Tokyo) on behalf of MEG II collaboration

日本物理学会2021年年次大会 令和3年3月14日

14aT3-7

2

MEG II experiment

- Search for rare muon decays
 to find definitive evidence for BSM
- Use world's most intense DC muon beam
 - continuously emits 7 × 10⁷ e⁺/s
 detected by a cylindrical drift chamber
- The detector signals are read out as waveform
 by DRS4 waveform digitizer
 1024 points @ 1.2 1.8 GSPS
- All the detectors as well as computing resource and analysis framework have been prepared.
- Starting physics data taking in 2021
 Engineering data were taken in previous years.
 - In this study, use 2020 data.

Cylindrical drift chamber (CDCH) (~1.6 × 10⁻³X₀, σ_p ~100 keV)

et

EPJ-C 78 (2018) 380

Drift chamber: a nutshell

Signal formation

- 1. Charged particle generates primary ionization clusters discretely in gas
- 2. The ionized e⁻s drift to an anode wire and form avalanche near the wire

Reconstruction

- 1. Measure the timing of the 1st cluster
- 2. Draw a drift circle
- 3. Fit a track to the drift circles

MEG II CDCH: an ultra low-mass chamber Gas: $He:iC_4H_{10} = 90:10$ Wires: 20 µm W anode + 40/50 µm Al cathode 2 m long, 9 layers, 1152 readout cells in total

4

Challenges

• Detecting the 1st cluster signal is essential for the experiment

The efficiency is directly connected to the e⁺ reconstruction efficiency, and thus, search sensitivity.

• Two difficulties:

1. S/N

The amplification in avalanche process (gas gain) has large fluctuation obeying a Polya distribution. The 1st cluster signal can be very small.

2. Pileup

Very high hit rate in MEG II: up to 1.7 MHz per cell, 35% occupancy in 250ns. polyaFunc

Denoising autoencoder

• Autoencoder: train network so that output = input

Latent space holds the features of signal

Denoising autoencoder: add noise to the target for the input More effectively learns the feature and becomes more robust Can be used to denoise noisy data

Apply to waveform data

 Use MC signal w/o noise + noise data (random trigger data w/o beam) (mix events randomly in time at 7 × 10⁷ s⁻¹) (non-Gaussian non-white noise)
 Tried in two directions: estimating signal or estimating noise

The model: signal estimation

Extend the denoising autoencoder with:

- 1D convolutional network
- 'UNet'-like structure with skip connections
- 2-channel input with 2-end waveforms from a wire
- Use 'mean squared logarithmic error (msle)' loss function.

with 1 mV offset to avoid 0-division.

https://arxiv.org/abs/1505.04597 (image segmentation)

Signal estimation with 1D autoencoder

Noise estimation

- Want to use other wires information together
 which contains information for coherent noise.
- However, neither increasing input channels nor extending to 2D input works well.

□ It is difficult to extract different signal patterns in different wires with CNN.

- Change the view of the data \rightarrow estimate noise instead of signal.
 - Coherent noise changes gradually over different wires. → 2D CNN can deal with it well.
 - Existence of signal masks the noise, but estimate it using other wires waveform.
 - Group 8 wires that connect to the same front-end cards into an input.

- 2D convolutional network
- 'UNet'-like structure with skip connections
- 2-channel input with 2-end waveforms from 8 wires
- Use 'mean squared error (mse)' loss function.

This is equivalent to the residual learning

https://arxiv.org/abs/1505.04597 (image segmentation)

Noise estimation with 2D CNN autoencoder¹⁰

Implementation

TRAINING

- Tensorflow 2.4 + Keras
- in Python3.7
- on Google Colab
- with Tensor Processing Unit (TPU)
- convert to ONNX format

INFERENCE

- ROOT based MEG II reconstruction framework
- in C++17
- ONNX Runtime C++ API

 with CPU single thread (Xeon Gold 6138 2.0 GHz)

High flexibility × Easy maintenance

Use one's preferred package (one good at the problem under consideration) for model building & training.

Use a common interface in C++ to use the trained model in inference/prediction.

GPU/TPU in cloud are available for training, while only CPU (single thread) is available in the MEG II resource & framework.

Results

• Apply to cosmic-ray (low rate) data in 2020 run.

□ 128 wires were readout (only 1/5 of the whole).

- □ Triggered by scintillation counters. $\rightarrow t_0$
- Evaluate the performance from the hit time distribution

Next

Improve

Tune hyperparameters
 Increase training samples or augmentation
 Develop a better model

• Speedup inference

Compress the model with pruning

Use a simpler or more efficient model with distillation

Apply to muon beam data

 Extend to directly detecting hits (times and amplitudes) from the input waveforms

Combine the noise & signal networks with transfer learning.

- Disentangle clusters from different hits (pileup).
- Require delicate MC tuning and precise data calibration.

	Signal estimation	Noise estimation
Training (TPU)	2.6 s/epoch	1.3 s/epoch
Inference (CPU)	1.2 s/events	1.5 s/events

* only 1/5 of full readout wires

* 60k waveforms used in training

Conclusions

- Applied denoising autoencoders to MEG II CDCH waveform data.
- The models certainly learn the features of signal and noise.
- Denoising enables lowering hit detection threshold and improves the detection efficiency of the 1st cluster signal.
 Superior to conventional waveform analysis with digital filters.
 A promising technique to improve the experiment sensitivity.
- Flexible & sustainable framework matching HEP analysis was established.
- Computation time in inference is an issue for practical application,
 in which only single thread CPU is available.
 Speeding up by a factor 5 is desirable.

- 1D conv ⇔ FIR digital filter. Apply multiple filters to catch different patterns.
- Activation \rightarrow nonlinear response.
- CNN → position invariant signal detection, but not scale invariant → learn from data. ← Augmentation will help it.
- Pooling → allow timing variation, good for local pattern recognition but loose global timing information
- U-net skip connection \rightarrow recover global timing information

ONNX

- The best solution as of today, we concluded, is using ONNX.
- Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models.
 Able to exchange the models built by different frameworks.

Supported frameworks

• Note that not all the features may be supported.

21

In python scripts,

- 2D convolutional network
- 'UNet'-like structure with skip connections https://arxiv.org/abs/1505.04597 (image segmentation)
- 2-channel input with 2-end waveforms from 8 wires
- Use 'mean squared error (mse)' loss function.