Evaluation of expected performance of positron spectrometer and achievable sensitivity of MEG II experiment

MEG II実験陽電子スペクトロメータに期待される性能と 到達可能な探索感度の評価

76th JPS Annual Meeting, 13/Mar./2021 The University of Tokyo, ICEPP, D3 Masashi Usami

Core-to-Core Program

- MEG II Experiment
 - Motivation and Overview
 - Positron Spectrometer
 - Pixelated Timing Counter (pTC)
 - Cylindrical Drift CHamber (CDCH)
- Sensitivity Estimation of MEG II Experiment

MEG II Experiment

- Search for muon decay: $\mu \rightarrow e\gamma$
 - With the branching ration sensitivity ${\sf Br} \sim 6 \times 10^{-14}$
 - cLFV: charged Lepton Flavor Violation
 - Prohibited in the standard model, predicted in the new models
 - To find the $\mu \to e \gamma \,$ means to find the new physics !

Detector Overview

Radiative Decay Counter (RDC) e Liquid Xe Gamma ray detector	Cylindrical Drift CHamber (CDCH) Positron wire tracker Positron Bending Magnet	The most intense DC muon beam in the world available at PSI <u>MEG:3×10⁷μ⁺/s \rightarrowMEG II 7×10⁷μ⁺/s <u>Measure positron Spectrometer</u> Measure positron vertex position, momentum and timing</u>		
	Pixelated Timing Counter Positron timing detector	Positron Resolution / Efficiency	MEG	MEG II Design (CDCH 10 layer)
		Theta (mrad)	9.4	5.3
		Phi (mrad)	8.7	3.7
		Momentum (keV)	380	130
		Vertex Z (mm)	2.4	1.6
		Vertex Y (mm)	1.2	0.7
		Time (ps)	108	37
 Upgraded experiment from MEG, ~×10 sensitivity 		Efficiency (%)	30	70

- 3-year DAQ period (20 week / year)
- x2 beam intensity, detector resolution, efficiency with new positron spectrometer

Pixelated Timing Counter (pTC)

- Composed of 512 scintillation counters with series connected SiPMs readout from both sides
 - 12 cm \times 4 or 5 cm \times 0.5 cm scintillator + 6 \times 2 SiPMs (from AdvanSiD)
- Measure the positron crossing timing O(30 ps) from multiple hits
 - Single counter resolution is ~70 -- 90 ps
 - Performance of 34.3 ps was demonstrated in 2017 commissioning

Cylindrical Drift CHamber (CDCH)

- Ultra-low mass cylindrical stereo wire chamber to reconstruct the positron track
 - 90% helium-based mixture and 10% isobutane
 - 192 drift cell (7-9mm square shape) x 9 layers
 - Positrons with enough momentum turns inside the CDCH region, and after several turns they go into pTC region
- Detector instability was reported during 2018-2019, stable detector operation under muon beam was achieved in 2020
 - With small fraction of additive gases of O2 and propanol
 - Readout electronics strictly limited: impossible for track reconstruction

Index

- MEG II Experiment
- Sensitivity Estimation of MEG II Experiment
 - Expected Performance of MEG II Positron Spectrometer
 - Sensitivity Estimation

Sensitivity Estimation

- The upper limit sensitivity is estimated with maximum likelihood analysis
 - Number of signal event (Nsig) is estimated by likelihood fit with probability density functions (PDFs)
 - The upper limit of Nsig at 90% confidence level is calculated with generated toy-experiment, take median of O(1000) results
- Update:
 - Gamma-measurement
 - JPS Autumn 2020 by S. Ogawa (right plot)
 - Suggestion of half-rate DAQ scenario due to radiation damage
 - 6.6e-14 is expected with half-rate scenario w/o positron update
 - RDC-measurement
 - JPS Autumn 2020 by R. Onda
 - Positron spectrometer performance update
 - This talk!

Expected Performance (MC)

MC is updated based on 2018 – 2020 commissioning (JPS Autumn 2020 by M. Usami)

- The latest performance estimation summarized above
 - ~30% improvement of the momentum resolution
 - ~20 30 % deterioration of the angular resolution
 - ~5 8 % drop of the efficiency
 - The difference comes from the simulation settings and the improvement of fitting algorithms
 - The acceptance region was extended to the low-energy region
 - No significant effect on physics sensitivity, since likelihood fit region is 52.2 53.5 MeV for positron

Update

- Case 0: Design
- Case 1: Momentum (p) + Acceptance Update
- Case 2: Timing (t) Update with Maximum Radiation Damage
- Case 3: Angle (θ / ϕ) Update
- Case 4: Conclusion with Normal Scenario
- Case 5: Efficiency Improvement Scenario (Optional)
- Case 6: Half Rate Scenario (Optional)
- Case 7: Additive Gas Scenario (Optional)

Update Scenarios

Summary and Prospect

- The expected positron spectrometer performance was obtained with updated MC after the commissioning in 2018 -- 2020
- The expected sensitivity of MEG II experiment was calculated with several scenarios:
 - Normal Scenario: $(5.97 \pm 0.08) \times 10^{-14}$
 - Additive gas impact (0.5% O2 in 2020): (6.07 \pm 0.08)×10⁻¹⁴
 - Efficiency improvement impact (e.g. CDCH II): $(5.2 \pm 0.13) \times 10^{-14}$
 - Half-Rate Scenario: $(5.99 \pm 0.09) \times 10^{-14}$
 - The efficiency recovered from 65% to 74%
 - Additional merit for hardware operation
 - less radiation damage on pTC, wire aging etc ...
- Final decision of DAQ scenario after 2021 engineering run, and the physics data accumulation soon

