

MEG II実験における大強度μ粒子 ビーム中での運用を見据えた 超低物質量RPCのレート耐性の研究 (1)

山本 健介 (東大理)

家城 佳^A、大谷 航^A、大矢 淳史、越智 敦彦^B、恩田 理奈 (東大理、東大素セ^A、神戸大理^B)

2021年3月13日(土) 日本物理学会第76回年次大会

13 Mar. 2021

<u>Outline</u>

- Introduction
 - MEG II signal and background
 - Radiative decay counter
 - RPC with DLC electrodes
 - Rate capability
- Beam test for $\boldsymbol{\mu}$ signal size measurement
 - Setup
 - Results of µ signal size
- Summary

13 Mar. 2021

MEG II signal and background

- MEG II searches for $\mu \! \rightarrow \! e \gamma$ decay, one of charged lepton flavour violation (cLFV) channels
- Dominant background is accidental coincidence of BG-e⁺ and BG- γ

Radiative decay counter

- Radiative decay counter (RDC) detects RMD e^+ with 1-5 MeV energy to tag BG- γ
- RDCs will be installed at both upstream and downstream of the target
- Upstream RDC is under development

13 Mar. 2021

Study on the rate capability of ultra-low material RPC, focusing on the operation under the high-intensity μ beam of MEG II experiment (1)

e⁺

Requirements for upstream RDC

- 1. <0.1% X_0 material budget $\leftarrow \mu$ beam with 28 MeV/c must pass through the detector
- 2. 90% efficiency for 1-5 MeV e⁺
- 3. 1 ns time resolution
- 4. Rate capability and radiation hardness for $10^8 \mu/s$
- 5. 20-cm diameter detector size

→ Candidate: <u>Ultra-low material Resistive Plate Chamber (RPC) using</u> <u>Diamond-Like Carbon (DLC)</u>

13 Mar. 2021

RPC with DLC technology

- Diamond-Like Carbon (DLC) is used as resistive electrodes
 - DLC is sputtered on Kapton foil
 - → Small material budget can be achieved
 - DLC resistivity is adjustable
 - → Small resistivity can be achieved, which is important for rate capability

sp²

- MEG II RPC design
 - 4 layers ← Higher efficiency

•
$$\epsilon_n = 1 - (1 - \epsilon_1)^n$$

- <0.1% X₀ material budget
 - 50 μ m Kapton foil \rightarrow 0.018% X₀
 - 100 nm aluminum \rightarrow 0.0012% X₀

13 Mar. 2021

RPC prototype detector

- Prototype detector performance for β from Sr90
 - Operated with ultra-low material design
 - Efficiency is dependent on applied HV
 - 55% efficiency is achieved with single layer
 - 90% efficiency is achieved with 4 layers
 - ~250 ps time resolution
- <u>Remaining question is</u> <u>rate capability</u>

13 Mar. 2021

Rate capability

- Current originated from signal flows in resistive electrodes from anode to cathode
- Voltage drop of *ir* occurs
- Effective HV = nominal HV voltage drop
- \rightarrow Less detector performance

DLC resistance = r

- Current *i* is dependent on signal charge
- The signal charge of MEG II µ beam is not measured yet
- \rightarrow Beam test at PSI
 - Obtain µ signal size (pulse height)
 - Obtain MIP e signal size (pulse height)
 - Test detector performance under the high-intensity MEG II µ beam

13 Mar. 2021

Expectation of µ signal size

- MEG II µ beam
 - High intensity (<1 x 10^8 /s)
 - \rightarrow Next talk
 - Low momentum (28 MeV/c)
 - → 10 times larger energy deposit than MIP e
- Signal charge is not proportional to energy deposit due to space charge effect

- Rate capability
 - Expect small µ signal charge
- Particle identification (PID)
 - Expect large difference b/w μ and e signal size

Energy deposit in RPC gas volume (MC)

13 Mar. 2021

<u>Setup of µ signal size test</u>

13 Mar. 2021

<u>µ pulse height</u>

- RPC detects low-momentum $\boldsymbol{\mu}$ for the first time
- Signal size of μ is 2-3 times larger than that of e due to more clusters and space charge effect

13 Mar. 2021

<u>Accidental trigger in µ signal size test</u>

- Monte Carlo (MC) simulation was done
- γ interacts in lead and generates BG $e^{\scriptscriptstyle -}$
- \rightarrow Accidental trigger source
- MC reproduced the accidentally triggered events

13 Mar. 2021

<u>Summary</u>

- We are developing ultra-low material RPC with DLC electrodes as MEG II upstream RDC
- Prototype detector has enough performance except for rate capability
- Beam test using MEG II beam took place at PSI
- We measured RPC response to low-momentum $\boldsymbol{\mu}$ for the first time
 - μ signal is 2-3 times larger than e signal although μ energy deposit is 10 times larger than e due to space charge effect
 - Most of entries at pedestal would be generated by accidental trigger from BG e
- Discuss rate capability based on obtained $\boldsymbol{\mu}$ signal size

13 Mar. 2021

Backup

13 Mar. 2021

Voltage dependence

- β : Efficiency is dependent on HV
- µ: Peak height moves by HV due to more clusters than e

operation under the high-intensity μ beam of MEG II experiment (1)

Space charge effect

- Ionized e is amplified by avalanche
- Positive ions move to cathode slowly
- Electric field deformation is caused by the charged carriers
- E₀ is applied electric field
- The value of the gas parameters like drift velocity and Townsend coefficient may vary with the position in the gas gap

Schematic view of avalanche and electric field deformation

http://home.iitb.ac.in/~pradeepsarin/students/tether/Nila driSaurabh_20123/RPC/frankfurt_thesis_RPC_physics.pdf

13 Mar. 2021

Particle identification

- RDC signals will be analyzed in LXe $\boldsymbol{\gamma}$ detected timing
- \rightarrow RMD is basically identified by timing in "US" RDC
- Pulse height of $\boldsymbol{\mu}$ and e helps RMD tagging

13 Mar. 2021

Setup of MIP e signal size test

13 Mar. 2021

Pulse height spectrum of MIP e

13 Mar. 2021