

次世代 $\mu^+ \rightarrow e^+\gamma$ 崩壊探索実験のための 光子ペアスペクトロメーターの開発 -アクティブコンバーターの性能評価-

池田史 (東大理)

潘晟^A,岩本敏幸^A,松下彩華,森俊則^A,大谷航^A,内山雄祐^A,山本健介,横田凜太郎
 (東大理、東大素セ^A)
 2022年9月7日(水)
 2022年日本物理学会秋季大会

Outline

- Introduction
- Measurements
 - Requirements for active converter about energy and timing performance
 - Performance evaluation method
 - Setup
 - Results of energy performance
 - Results of timing performance
- Summary

$\mu^+ \rightarrow e^+ \gamma$ **Decay**

 ν_e

 μ^+

Charged lepton flavor violation as a good probe into beyond-SM

 e^+

- Signal
 - same energy of $52.8\,\mathrm{MeV}$
 - same timing
 - back-to-back
- Background
 - Accidental background is dominant
- . The best limit is $B(\mu \to e \gamma) < 4.2 \times 10^{-13} \, (90\,\%\,{\rm C\,.\,L.})$ by MEG experiment (2016) @PSI

 μ^+

- MEG II experiment @PSI is on progress with 6×10^{-14} as the goal
- Hight Intensity Muon Beam (HiMB) plan to be introduced in 2026-2027 @PSI
 - . Upgraded muon beam by a factor of $100 \rightarrow O(10^{10}) \mu^+/s$
 - Good opportunity to start new $\mu^+ \rightarrow e^+ \gamma$ decay search
 - Target sensitivity is $O(10^{-15})$
- Energy resolution is important for gamma-ray detector

Pair Spectrometer with Active Converter

- Energy loss in the converter material cannot be ignored \rightarrow Active material as a converter
- . Target resolution $(E_{\gamma}, \vec{x}_{\gamma}, t_{\gamma}, \Theta_{\gamma}) = (0.4\%, 0.2 \text{ mm}, 30 \text{ ps}, 50 \text{ mrad})$
- Considering measuring timing with active converters
 - CMS MIP timing detector achieved time resolution of 30 ps using LYSO bar + SiPM
 - Shape of the bar also has advantages in terms of segmentation in *φ*-direction to reduce pile-ups (see previous talk 7pA442-1 by R.Yokota)

LYSO as Active Material

Density [g/cm^3]	7.2
Light Yields [rel. to Nal]	75%
Emission Peak [nm]	420
Decay time [ns]	40
Radiation Length [cm]	1.1
Critical Energy [MeV]	12
Hygroscopicity	None

Critical Energy: $E_c \propto 1/Z$, if E > Ec, ionization < brems.

- Good light yields \rightarrow good energy resolution
- + Fast response \rightarrow good timing resolution

Requirements for Active Converter

- LYSO crystal as active material + SiPM as photo-sensor
- Target performance of pair spectrometer and requirements for active converter
 - About energy performance, energy resolution of 0.4%@52.8 MeV, corresponding to 200 keV
 → If 4 mm thick LYSO, 200 keV corresponds to 3%@MPV of the energy deposited by 2 MIPs (e⁺ and e⁻)
 → Energy resolution ∝ 1/√p.e, so at least 1200 photo-electrons required for 2 MIP (600 photo-electrons for 1 MIP)
 - Position dependence of light yield can be corrected by the conversion point measured by the conversion pair tracks
 - About timing performance,

time resolution of 30 ps for, by measuring timing of e^+ , e^- independently

 \rightarrow 40 ps. for 1 MIP

- What we want to know
 - Average number of photo-electrons to 1 MIP
 - Average time resolution to 1 MIP
 - \rightarrow To consider specific designs of (LYSO + SiPM)

Consideration of Performance Evaluation Method

Difficulty in giving energy to thin LYSO scinti. to the extent of 1 MIP

- Alpha-ray (Am-241) is mostly monochromatic (~ 5.4 MeV) and very easy to stop
 → Good for energy performance evaluation, and difficult for timing performance
 evaluation
- Beta-ray (Sr-90) has the maximum Q-value of 2.2 MeV \rightarrow Not enough energy for LYSO scinti. of ~ 3-4 mm (dE/dx ~ 1 MeV/mm)
- Cosmic-ray is a MIP and penetrate the LYSO scinti. of ~ 3-4 mm
 → Can both energy and timing performance evaluations
 (But, Landau distribution is unavoidable)

LYSO scinti. \rightarrow 30x30x4mm, with a dimple

- Thickness \rightarrow detection efficiency for gamma-ray
- Size \rightarrow # of chs
- Dimple → convenience of mass production (this study started prior to the segmentation studies, so bar configuration not tested yet)

- SiPM \rightarrow three patterns

 Many parameters → pixel pitch, size, connection, coupling to the scinti. (Mainly to improve time resolution)

In all three patterns,

Charge Distributions (1.3x1.3mm 15μ m SiPM x1, Dimple Readout)

- Scintillators are thin
 → Charge distributions roughly form Landau distributions
- Detected photons ~ 470 p.e./counter at MPV of Landau distributions

Charge Distributions (2.0x2.0mm 50 µm SiPM x1, Double-Side Readout)

 \rightarrow Charge distributions roughly form Landau distributions

• Detected photons ~ 1100 p.e./counter at MPV of Landau distributions

Charge Distributions (1.3x1.3mm 15µm SiPM x12, Double-Side Readout) Charge Dist. of LYSO A Right-Side Charge Dist. of LYSO A Left-Side

- Scintillators are thin \rightarrow Charge distributions roughly form Landau distributions
- Unknown gains due to so small 1 p.e. waveforms, so unknown # of detected photons But, when estimated from photo-sensitive areas and PDEs, ~ 8800 p.e./counter
- The requirement of 600 p.e. is easily achievable in all three readout patterns

Attenuated by a factor of < 0.32

Template Waveforms

• For the same pixel pitch $(15 \mu m)$

 \rightarrow series connection has a shaper waveforms and rise faster

• For the different pixel pitches (15μ m and 50μ m) \rightarrow smaller pixel pitch has a shaper waveforms

Time resolution

• time resolution = $\sigma(t_{\text{counter A}} - t_{\text{counter B}})/\sqrt{2}$

• If double-side readout, $t_{\text{counter i}} = (t_{\text{right SiPM}} - t_{\text{left SiPM}})/2, (i = A, B)$

- Detection time was obtained by applying the digital constant fraction method to the waveform
- Fraction parameters were scanned
 - 0.02 was optimal for both 1.3x1.3mm x1 and 2.0x2.0mm x1
 - 0.07 was optimal for 1.3x1.3mm x12 \rightarrow S/N may limit time resolution

Table of Summary

	This study			CMS MTD BTL
Scinti.	30x30x4mm with a dimple LYSO			3x3x50mm LYSO
Readout	Dimple	Double-Side	Double-Side	Double-side
SiPM	1.3x1.3mm15µm x1	2.0x2.0mm 50 μ m x1/side	$1.3x1.3mm15\mu m x12/side$	$3x3mm 15\mu m x1/side$
p.e.@MPV	468 p.e.	2252 p.e.	8800 p.e. scaled by photo-sensitive area and PDE	12000 p.e.
Time Resolutions	323 ps	135 ps	102 ps	30 ps
Time Resolutions@1000 p.e. Scaled by ∝ 1/√L.Y.	221 ps	203 ps	303 ps	104 ps
Risetime	~ 6.3 ns	~ 3.8 ns	~ 4.0 ns	
S/N	~ 450	~ 350	~ 100	

- The target value of 600 p.e. can be easily achieved
- Time performance seems to be slightly better for double-side readout than for dimple readout
- The best time resolution was 102 ps, which does not meet the requirement yet
 - Poor S/N
 - Geometry of scinti. and coverage by photo-sensitive area

Summary and Prospects

- . In future $\mu^+ \rightarrow e^+\gamma$ decay search experiment, **pair spectrometer with active** converter are being considered for gamma-ray detector
- As an active material, LYSO crystal is being considered for use in terms of efficiency
- Also considering using active converters as **timing layer**
- Average response of (30x30x4mm LYSO + SiPM) to MIP was investigated
 - About energy performance, The required light yield to achieve 0.4% as pair spectrometer found to be achievable
 Position dependence of light yield will be measured
 - About timing resolution
 The timing resolution of 102 ps has been achieved.
 It should be further improved.
- It is planned to test using LYSO bar to improve timing performance
 - Also to test Fast-type LYSO expected to have a good time response

Charge Distributions (2.0x2.0mm $50 \mu m$ SiPM x1, Double-Side Readout)

\rightarrow self-radiations?

More investigations are needed to conclude whether self-radiations is the cause

JT Crystal Technology's LYSO

	Ce:LYSO	Ce:FTRL (or so-called Fast-LYSO)
Density [g/cm^3]	7.2	7.2
Light Yields	8-10%	8-10%
Energy Resolution	36000±10%	30000±10%
Emission Peak [nm]	420	420
Decay time [ns]	40	31
Coincidence Time Resolution [ps] (2mm cube)	125	96
Refractive Index	1.81	1.81
Hygroscopicity	None	None

PDE Comparison

Photon detection efficiency vs. wavelength (typical example)

Series Connection of SiPMs and Their Gains

- Voltage is distributed to each SiPM so that a common current flows
- Then, if the I-V characteristics are similar, V_{over} (and also gain)
 will be equal in each SiPM
- Where similar I-V characteristics mean the similar outlines of the graphs and the similar levels of current values

