2021年物理ランにおけるMEG II実験 液体キセノンガンマ線検出器の性能評価

日本物理学会 2022年 秋季大会 (岡山理科大学) 7aA442-1

小林暁 (東大理)、 他MEG IIコラボレーション Satoru Kobayashi on behalf of the MEG II collaboration The University of Tokyo

THE UNIVERSITY OF TOKYO

- Introduction
 - MEG II experiment
 - Liquid Xenon gamma-ray detector
 - Charge exchange measurement
- Performance
 - Energy resolution
 - Timing resolution
 - Efficiency
- Summary & Prospects

Charged Lepton Flavor Violation (cLFV)

"An Experimental Review of Charged Lepton Flavor Violation in Muon Channel ", W. Ootani

- Flavor mixing is not observed only for charged leptons.
- cLFV is strongly suppressed in SM + ν oscillation ($Br(\mu \rightarrow e\gamma) \sim 10^{-54}$).
- Large enhancement is predicted by new physics.
- High energy scale beyond LHC is indirectly accessible.

µ→eγ Search

- $\mu^+ \rightarrow e^+ \gamma$ decay: two-body decay
 - Signal: Coincidence & back-to-back & 52.8 MeV e^+ and γ
 - Main background: accidental
 - Positron from Michel decay + accidental gamma-ray.
 - Key: Precise measurement of e^+ and γ to discriminate signal and BG.
- Current limit: $Br(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13} (90\% \text{ C.L., MEG})$

MEG II experiment

- MEG II started searching for $\mu^+ \rightarrow e^+ \gamma$ decay in 2021.
 - Goal: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ in 3 years (2021:pilot run + 2022-2024).
 - Continuous high intensity muon beam ($\geq 3 \times 10^7 \mu/s$) @PSI, Switzerland
 - Detector upgrade (Resolution improvement for each detector)

Liquid Xenon detector upgrade

Performance	MEG	MEG II (design)	MEG II (measured)
Position resolution[mm]	5-6	2.5	2.5
Energy resolution[%]	2.4 / 1.7	1.0 / 1.1	2.0 / 1.7
Time resolution[ps]	62	50 - 70	61
Efficiency[%]	65	69	64

Orange: 2020 readout

- The entrance face is covered with 4092 VUV-sensitive Multi-Pixel Photon Counters (MPPC).
 - Uniform light collection efficiency \rightarrow Improve energy & position resolution.
 - Reduced material budget \rightarrow Higher detection efficiency
- In this talk, measured performances in RUN 2021 will be presented.
 - Energy & time resolution, and detection efficiency with full-scale detector.
 - The number of readout was limited to ~1000 up to 2020.

- 7aA442-[1-4]
 - S. Kobayashi: Performances of the LXe detector in 2021
 - A. Oya: Combined analysis in 2021
 - S. Ban: 2022 RUN
 - A. Matsushita: Calibration of the LXe detector in 2022
- 6pA421-[1-2] : M. Takahashi, K. Yamamoto
 - RPC for MEG II
- 8aA421-2: Y. Uchiyama
 - Machine Learning for positron reconstruction
- 7pA442-[1-2] : R. Yokota, F. Ikeda
 - Future cLFV search

Charge Exchange(CEX) Measurement

- Correlated gamma-rays from $\pi^- p \rightarrow \pi^0 n$, $\pi^0 \rightarrow \gamma \gamma$.
- Tag one gamma-ray and measured the other with the LXe detector.
 - Energy measurement with BGO crystal + PMT

Satoru Kobayashi

- Timing measurement with plastic scintillator + MPPC (pre-shower counter)
- Back-to-back gamma-ray pair : 55 MeV and 83 MeV.
- The full scan over the detector was not completed due to LH2 target failure.

Development of pileup analysis

- Pileup analysis for the data was developed.
 - It was tested only with MC simulation.
 - Peak search of light distribution + template fit of waveform.
- Ratio of fit failure in CEX measurement is limited to 1.4%

Energy Resolution of central region

- Spectrum is fitted with an Exponential + Gaussian function.
- Energy resolution: 2.0% (w < 2 cm) / 1.7% (w > 2 cm):
 - consistent with previous measurements.
- Improved for gamma-ray hit in shallow region (w < 2 cm) from MEG.
- Significantly worse than MC (1.0%) as in MEG.

Uniformity of energy resolution

Preliminary

- Resolution is relatively uniform in u within acceptance.
- Energy resolution is < 2.0% for almost all v, but nonuniformity is observed.
 - Resolution is 1.7-1.8% for the area with a large statistics.
 - Further calibration and correction would provide better uniformity.

Time Resolution

Oya & Matsushita

 $\sigma_{\Delta t} = \sigma_{LXe} \oplus \sigma_{pre-shower} \oplus \sigma_{vertex}$

$\sigma_{\Delta ext{t}}$	Spread of time difference	96.9 <u>+</u> 0.4 ps
σ_{vertex}	Contribution from vertex size	70.0±5.7 ps
$\sigma_{pre-shower}$	Resolution of pre-shower counter	28.4±0.2 ps
σ_{LXe}	Resolution of LXe detector	60.7 <u>±</u> 6.0 ps

- Time resolution can be measured with the time difference between the LXe detector and pre-shower counter.
- The time resolution is 61 ps: better than previous JPS (85 ps).
 - Comparable resolution to MEG: 62 ps.
 - Waveform analysis configuration was revised.
- Tail component comes from non-uniform time response.

Detection Efficiency

- Principle:
 - Trigger events based on energy of BGO crystal
 - Select events of E_{BGO} ~ 83 MeV.
 - Eliminate background from radiative capture.
 - $\pi^- p \rightarrow \gamma n$, $E_{\gamma} \sim 129 \text{ MeV} \& E_n \sim 9 \text{ MeV}$
 - Calculate a fraction of events with E_{LXe} larger than a given lower bound.
- Material budget before LXe volume deteriorates the efficiency.

Detection Efficiency

Efficiency curve

$$\epsilon_{\gamma} = \epsilon_{\gamma,MC} \times \epsilon_{CEX,Data} / \epsilon_{CEX,MC}$$

Material	Radiation length [X ₀]
Magnet	0.197
MPPC	0.019
Support structure	0.091
Liquid xenon (1.5 mm)	0.054

- Efficiency for signal γ is estimated as $64 \pm 1\%$ ($E_{\gamma} > 48$ MeV).
 - Dominant uncertainty is estimation of radiative capture BG.
- Source of inefficiency with respect to MC:
 - Low-energy tail (5%) + LXe in the entrance face (3%).
- MEG detection efficiency: 65% (w/o analysis efficiency)

- LXe is filling the gap in the MPPC support structure.
 - Gap between CFRP and the cryostat wall.
- Thickness of LXe volume is estimated by "reusing" MPPC alignment measurement.
 - MPPC alignment with a well-aligned low-energy gamma-ray.
 - Rate of gamma-ray events is sensitive to LXe thickness.
- 1.5 mm LXe on average \rightarrow 2.7% inefficiency.

JPS autumn (Okayama) | 6 - 8 September, 2022 | 7aA442-1

Summary

Performance	MEG	MEG II (design)	MEG II (measured)	Comments
Position resolution[mm]	5-6	2.5	2.5	Measured in 2018
Energy resolution[%]	2.4 / 1.7	1.0 / 1.1	2.0 / 1.7	CEX 2021
Time resolution[ps]	62	50 - 70	61	CEX 2021
Efficiency[%]	65	69	64	CEX 2021 w/o analysis efficiency

- MEG II started physics run to search for $\mu^+ \rightarrow e^+ \gamma$ in 2021.
- $\pi^0 \rightarrow \gamma \gamma$ decay was used to evaluate resolutions and detection efficiency.
- Energy resolution for shallow gamma-ray hit is improved from MEG.
 - Discrepancy between MC and data remains.
 - The result implies that the bottleneck of the energy resolution is not the readout.
 - Non-uniformity of the resolution in v implies limits the overall resolution.
- Efficiency and time resolution were comparable to MEG.
- The sensitivity improvement from the detector upgrade is ~35 % in total.
 - 25% from position resolution, 10% from energy resolution.

Backup

2021 RUN – Sensor Calibration -

- Photosensor performance was frequently monitored with intrinsic calibration sources (LED and Am source).
- Radiation damage during 2021 run:
 - PMT gain: 840k -> 750k (11% decrease)
 - MPPC PDE: 8.4% -> 5.6%

2021 RUN – Detector Response -

- The detector response during the beam time was monitored with
 - 9 MeV gamma-ray from thermalized neutron capture.
 - 17.6 MeV gamma-ray from
 - ~170 MeV Cosmic-ray energy peak.

2021 RUN – Energy Scale -

The energy scale must be measured with a better precision than the energy resolution (1.8%).

Satoru Kobayashi

RUN2021: Charge Exchange(CEX) Measurement

- Uniformity of the energy scale and energy resolution was measured with CEX setup.
- 21 out of 24 patches are scanned by moving the BGO detector.
- The full scan over the entire detector was not completed due to the short livetime of the LH2 target.
- The analysis of the energy resolution and efficiencies are in progress.

Material Budget of LH2 target

Target	Cell	Tube	transmission probability
MEG (old)	Stainless, 0.5 mm	Stainless, 1 mm	98.6% * 97.3% = 95.9%
MEG II (new)	Stainless, 0.5 mm	Stainless, 3 mm	98.6% * 92.0% = 90.7%
Current gem4	Al, 1 mm	Stainless, 0.5 mm	99.4% * 98.6% = 98.0%
			Decedently information

Based on the info. by Angela.

- Material budget of LH2 target can explain the discrepancy of efficiency curve.
 - 7.5% between MC and MEG II target.
- This doesn't affect the efficiency of signal gamma.
 - Only CEX measurement is affected.

Efficiency for signal gamma

Efficiency curve, Signal MC

- Efficiency for nominal acceptance: 69% in MC
 - 48 MeV, |u| < 25 cm, |v| < 69.3 cm
 - Same value as the design paper.
- Efficiency in data: 69% * 98% (LXe) * 94 \pm 1% (energy response + unknown) = 64 \pm 1%.
 - The final efficiency value depends on the definition of the acceptance.

Interaction point in cross-sectional view

- LXe is filling the gap in the MPPC support structure.
 - Gap between CFRP and the cryostat wall.
 - The curvature of CFRP is not completely the same as the cryostat wall.
 - Thickness is estimated with low-energy gamma-ray.

JPS autumn (Okayama) | 6 - 8 September, 2022 | 7aA442-1

- We "reused" MPPC alignment measurement in 2018:
 - Scan 124 keV gamma-ray beam over the entrance face.
 - Low-energy \rightarrow sensitive to LXe thickness.
- Signal rate has a large position dependence derived from thickness of LXe volume.

LXe thickness vs MPPC row

- Position dependence of signal rate is translated to LXe thickness.
 - Normalized at the edge of CFRP. •
- LXe thickness is ~ 2 mm at the middle of CFRP.
 - The average thickness is 1 mm (0.036 X_0) ~ 1.8 % inefficiency ٠
- The measured radius by 3D laser scanner at room temperature has a similar trend.
 - Direct comparison is difficult because of thermal contraction.

100

Row