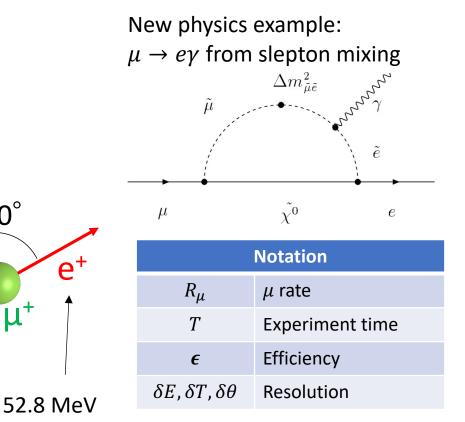
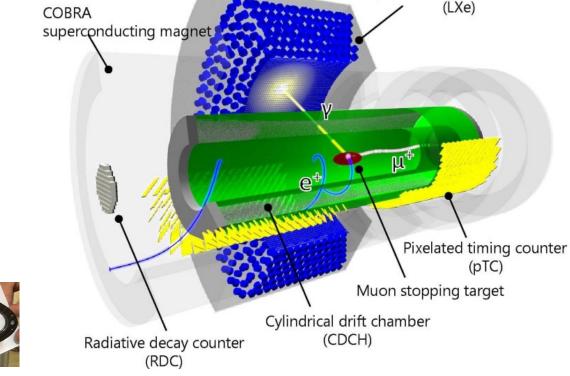
MEG ||実験2021年物理データの解析 - 陽電子測定の評価と物理解析の現状 -

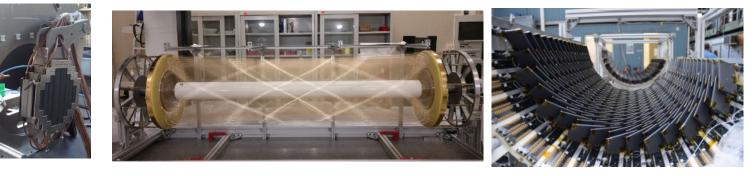

大矢 淳史, 他MEG IIコラボレーション 日本物理学会2022年秋季大会

Motivation and principle of $\mu \rightarrow e\gamma$ search

 180°


- $\mu \rightarrow e\gamma$ search at MEG II
 - CLFV decay, forbidden in SM
 - Target sensitivity: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ \rightarrow Can probe O(10 TeV) physics
- Search strategy
 - Signal identified by kinematics
 - Statistics: $N_{sig} \propto R_{\mu} \cdot T \cdot Br(\mu \rightarrow e\gamma) \cdot \epsilon$
 - Main BG: Accidental coincidence of BG-e & BG- γ
 - $N_{BG} \propto R_{\mu}^2 \cdot T \cdot \delta E_e \cdot \delta E_{\gamma}^2 \cdot \delta \theta^2 \cdot \delta T$
 - \rightarrow Use of DC beam @PSI
 - \rightarrow High resolution measurement

Kinematics	Signal	BG
$e\gamma$ time difference	Same time	No correlation
$e\gamma$ direction	Opposite	No correlation
E _e	52.8 MeV	< 52.8 MeV
E_{γ}	52.8 MeV	< 52.8 MeV

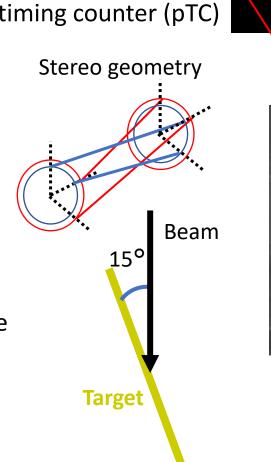

MEG II apparatus

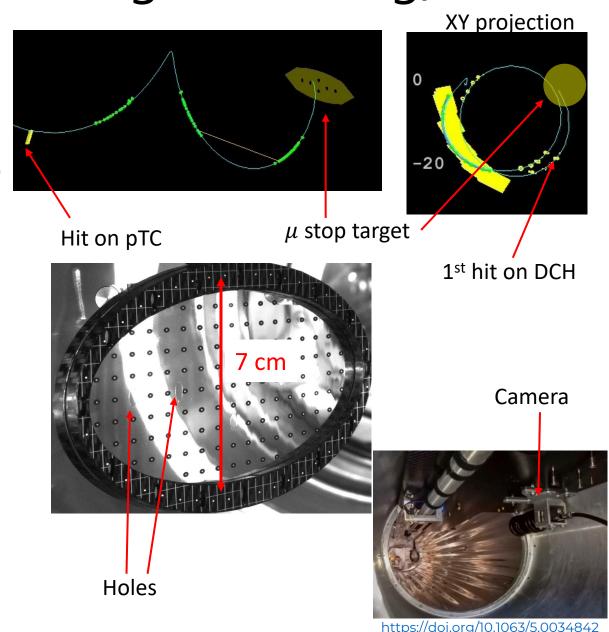
- Apparatus
 - Muon stopped on target
 - Positron detection with magnet + DCH + pTC
 - Gamma detection with LXe detector
 - BG- γ tagging with RDC detector

Liquid xenon photon detector

MEG II apparatus (vertexing & tracking)

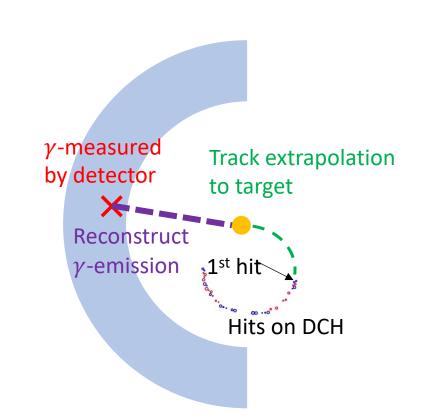
. .


- Positron trajectory
 - 1. Emitted from target
 - 2. Make hits on drift chamber (DCH)
 - 3. 1.5 or 2.5 turns from target to timing counter (pTC)



- Stereo geometry wire chamber
- $r_{inner} = 17 \text{ cm}, r_{outer} = 27 \text{ cm}$
- μ stop target
 - 15° slanted w.r.t beam
 - $r \sim 3.5$ cm projected on XY plane
 - 6 holes
 - Camera

Dot markers _



Event reconstruction

- Positron reconstruction
 - Decay position and angle by track extrapolation to target
 - t_e measured at pTC & TOF corrected (use decay point)
 - *E_e* from track curvature

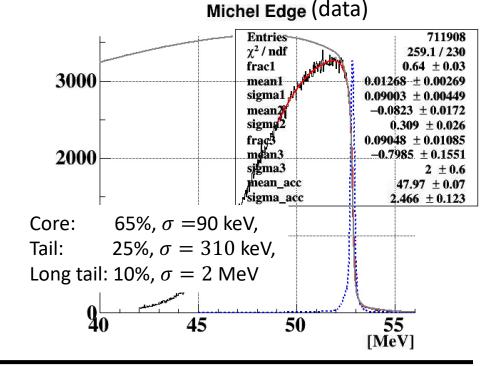
→ Evaluation of tracking & vertexing performance

- Combination of positron and gamma
 - LXe detector measures variables at reaction point
 - Full γ -reconstruction rely on decay position from track
 - t_{γ} at vertex reconstructed with TOF correction
 - Gamma angle at vertex by connecting vertex and reaction point
 - → Need precise target alignment
 - → Evaluation of combined resolution

<u>Outline</u>

h

Introduction


- Positron reconstruction and combined analysis
 - Tracking & vertexing performance evaluation
 - Combined time reconstruction
 - Alignment
- Sensitivity estimate
 - Overview of dataset
 - Likelihood analysis
 - Normalization
- Summary and prospect


Tracking performance (1/2)

- Michel edge fitting
 - Fit function: $Eff(E_e) \otimes Resolution of E_e$
 - Eff(*E_e*): *E_e* dependence of efficiency (erf modeling)
 - Resolution: Modeled with triple gaussian
 - ✓ Good data-MC agreement achieved (a few %)

	Core	Core frac	Tail	Tail frac	Method
Data	90 keV	70%	310 keV	30%	Michel fit
MC	86 keV	75%	295 keV	25%	MC truth

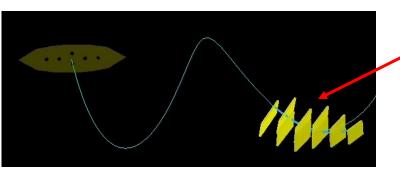
- Improvement from MEG
 - MEG resolution was 306 keV
 - ×3 improvement achieved

MC study: MC reco – MCtruth

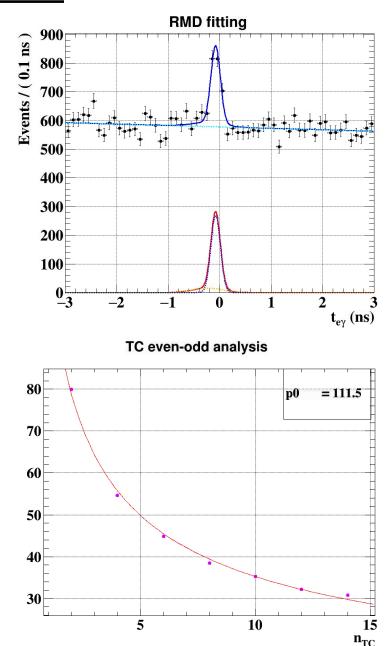
Tracking performance (2/2)

- Double turn analysis
 - Divide 2-turn tracks into different 1-turn tracks and compare
 - $\sigma_{\phi}, \sigma_{\theta}, \sigma_{y}, \sigma_{z}$ evaluation, σ_{P} cross-check
 - Systematics found and under investigation
 - Offset in difference b/w 1st turn and 2nd turn
 - B-field mis-calibration?
 - Wire mis-alignment?

	V

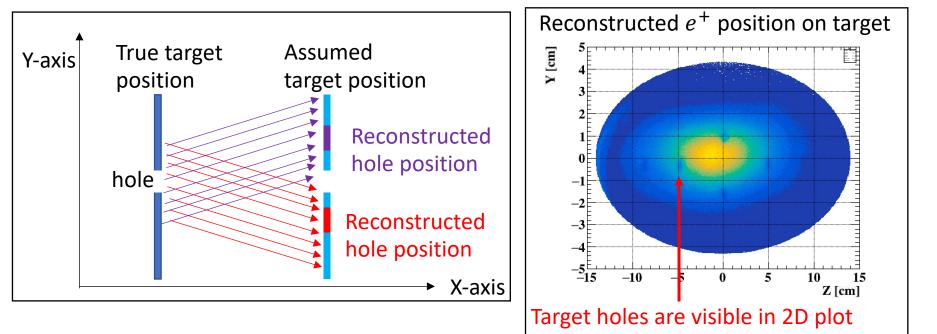


	Currently achieved	MEG I
$\sigma_{oldsymbol{\phi}}$	5.6 mrad	8.7 mrad
$\sigma_{ heta}$	7.7 mrad	9.4 mrad
σ_y	0.8 mm	1.2 mm
σ_{z}	2 mm	2.4 mm


Combined time resolution

- Combined σ_t in RMD
 - Applied kinematical selections to have good S/B in fit
 - Result: $\sigma_t = 91 \pm 9 \text{ ps}$
- Time resolution from each detector

 ✓ Even-odd analysis of pTC gives ^{112 ps}/_{√nTC} resolution
 ✓ CEX gives 61 ± 6 ps resolution for t_γ (previous talk)
 σ_t ⊖ ^{112 ps}/_{√nTC} = 75 ± 10 ps


Multiple hits are made on pTC.
 n_{TC} is # of pTC counter used in timing.

Detector alignment

✓ DCH-target alignment with target hole analysis

- Hole position vs track direction analysis
- Up to 200 300 μ m difference between track and optical method (CT-scan)

 Track – CT difference
for different holes

 Difference of x,y,z (cm)

 (-0.011, -0.008, 0.05)

 (-0.01, -0.005, 0.05)

 (0.003, -0.027, 0.003)

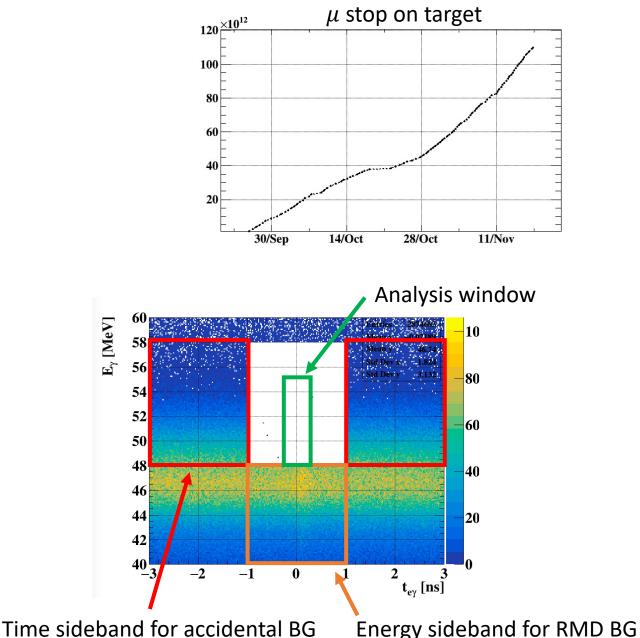
 (-0.003, -0.022, 0.016)

 (0.032, -0.029, -0.014)

 Global offset roughly
(0.01, -0.017, 0.02)

• To do

- Global alignment between DCH and LXe detector with cosmic ray
- Time variation of target position with camera data (up to 300 μm is already found)


<u>Outline</u>

- Positron reconstruction and combined analysis
 - Tracking & vertexing performance evaluation
 - Combined time reconstruction
 - Alignment
- Sensitivity estimate
 - Overview of dataset
 - Likelihood analysis
 - Normalization
- Summary and prospect

2021 dataset

• DAQ in 2021 pilot run

- Not a full-year physics run
 - Needed to define data taking scheme
 - Finally achieved fully efficient DAQ in Oct
- Beam rate change during the run
- Also took required set of calibration data
- Situation with 2021 data analysis
 - Enough quality for physics analysis
 - Analysis in progress
 - Blinded done with $t_{e\gamma}$, E_{γ}
 - Detector performance evaluation
 - BG studies with sidebands

Analysis overview

- Likelihood analysis to estimate N_{sig}
 - Extended un-binned fit on energy, angle, time and RDC

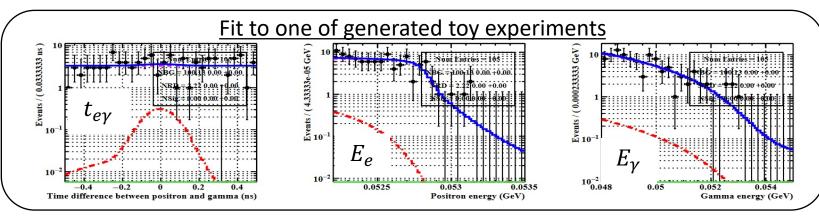
$$\times \frac{e^{-(N_{sig}+N_{Acc}+N_{RMD})}}{N_{obs}!} \times \prod_{dataset} \left(N_{sig} \cdot S(x) + N_{acc} \cdot A(x) + N_{RMD} \cdot R(x) \right)$$

Same as usual extend fit formalism
PDFs of $E_e, E_\gamma, t_{e\gamma}$ etc.

- Confidence interval
 - Feldman-Cousins method, profile likelihood ratio used for ordering: $\lambda(N_{sig}) = \frac{L(\text{best fit with fixed } N_{sig})}{L(\text{full best fit})}$
- Branching ratio

L

• Branching ratio given by dividing with normalization: $Br = \frac{N_{sig}}{k} = N_{sig} \times SES$

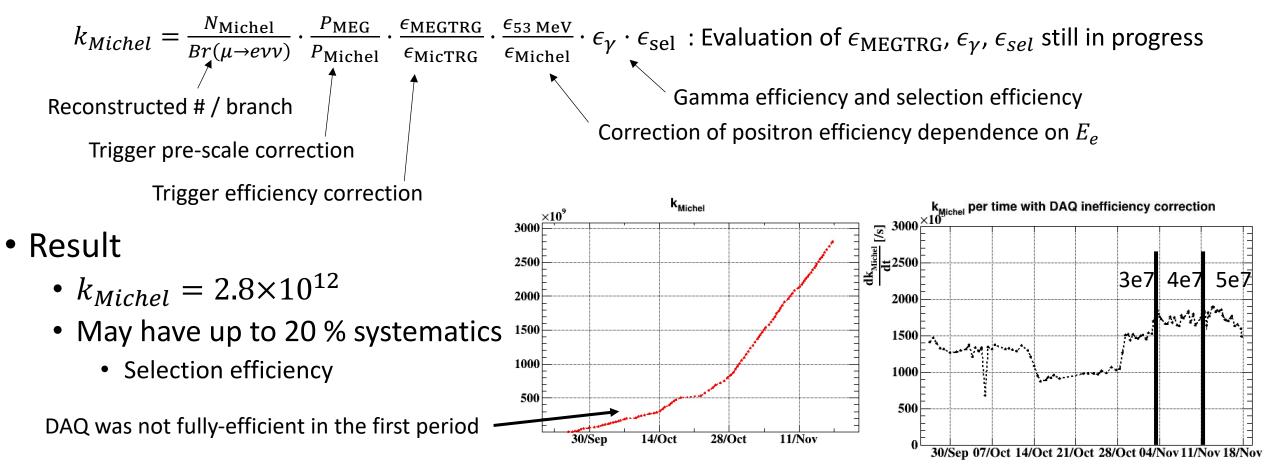

PDF parameters for sensitivity estimation

14

	Currently achieved performance in MEG II	Performance in MEG
$ heta_e$, ϕ_e	7.7/5.6 mrad: From double turn analysis	9.4/8.7
y_e, z_e	0.8/2 mm: From double turn analysis	1.2/2.4
E _e	Double gaussian (90 keV + 310 keV): From Michel fit	306
E_{γ}	2%: From CEX resolution analysis	2.4% (w<2 cm), 1.7% (w>2cm)
u, v, w_{γ}	2.5 mm for w < 2 cm: From collimated gamma ray data	5 mm
$t_{e\gamma}$	85 ps for core (83%), 280 ps for tail (17%): From RMD time	122 ps
RDC	Not yet included in sensitivity calculation	Not installed

- Notes
 - Core $t_{e\gamma}$: $\frac{112}{\sqrt{n_{TC}}} \oplus 70$ in reality, but per-event error is not ready in sensitivity calculation
 - E_{γ} : In edge region, 2021 calibration data lacks statistics and expected to be worse than 2%
 - u, v, w_{γ} : Dependent on w_{γ}

- Analysis with preliminary selections
 - Analysis window
 - No gamma selections (cosmic veto, pileup etc.)
 - Preliminary positron tracking quality cuts
- Expected 90% C.L sensitivity on $N_{sig} = 2.3$ for 2021
 - Expected with N_{BG} estimated from $t_{e\gamma}$ sideband data
 - 2.3 is almost BG-free like value
 - Sensitivity: Median of upper limit in toy experiments

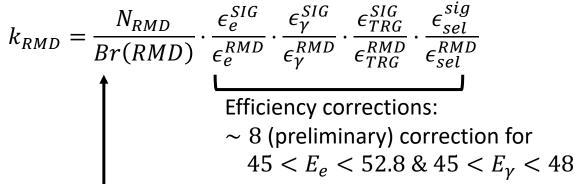

Analysis window

- $\theta_{e\gamma}$ < 40mrad
- $\phi_{e\gamma}$ < 40mrad
- $t_{e\gamma}$ < 500 ps
- 52.2 MeV< *E_e* <53.5 MeV
- 48 MeV< E_{γ} <55 MeV

Michel normalization

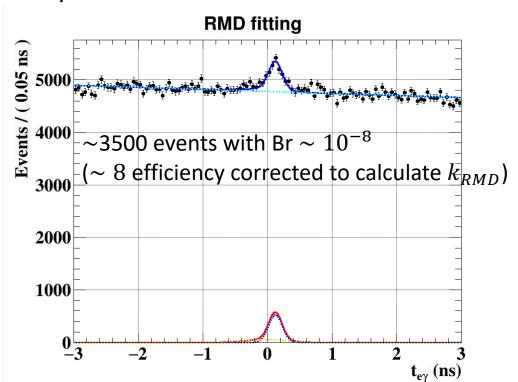
Method with positron efficiency & beam rate automatically included

- Use of events on positron-only trigger (applied with pre-scaling)
- Calculation



16

RMD normalization


• Method with gamma efficiency also automatically included

- Larger correction than Michel normalization
- Use of energy sideband data: $45 < E_e < 52.8 \& 45 < E_{\gamma} < 48$ region
- Calculation

Evaluated with extended fit to time peak

- Result
 - $k_{RMD} = 2.75 \times 10^{12}$
 - May have > 20% systematics
 - Can be improved with detailed investigation with different kinematical cuts

Summary and prospect

• Presented positron tracking performance

	Currently achieved performance		
$\theta_e, \phi_e, y_e, z_e$	7.7mrad/5.6 mrad/0.8 mm/2mm : Evaluated from double turn analysis		
E _e	Double gaussian (90 keV + 310 keV): From Michel fit		

- 8.2 $\times 10^{-13}$ branching ratio sensitivity with 2021 pilot run dataset
 - Approaching the MEG I full data (2009 2013) sensitivity
 - Though beam time was not fully exploited for physics data taking (effectively 4 weeks)

	Normalization	N _{sig} sensitivity	Br sensitivity
2021	2.8×10^{12}	2.3	8.2×10^{-13}
MEG I full data	1.71×10^{13}	9.1	5.3×10^{-13}

- Prospect
 - Physics data taking started this July \rightarrow Detail in the next presentation
 - Analysis for 2021 in progress