

MEG II実験背景事象削減のための DLC-RPCの放射線耐性評価

神戸大理 高橋 真斗 他 MEG IIコラボレーション

2022年9月6日(火) 日本物理学会2022年秋季大会

Outline

Introduction

- MEG II experiment
- Radiative Decay Counter
- Requirements for upstream RDC
- Resistive Plate Chamber using Diamond-Like Carbon electrodes

Radiation-hardness of DLC-RPC

Results of irradiation test

Summary and Prospects

MEG II experiment

>MEG II searches for $\mu^+ \rightarrow e^+ \gamma$ decay

Charged lepton flavor violating decays

>Main background \rightarrow accidental coincidence of BG-e⁺ and BG- γ

Radiative Decay Counter (RDC)

Requirements for upstream RDC

Requirements for US-RDC

- 1. Material budget:
- < 0.1% radiation length
- \Rightarrow muon beam with 28 MeV/c must pass through the detector

- 2. Rate capability:
- 3. Radiation hardness:
- 4. Efficiency:
- 5. Timing resolution:
- 6. Detector size:

4 MHz/cm² of muon beam

- > 90% for MIP
- < 1 ns
 - **20 cm** (diameter)

Resistive Plate Chamber (RPC) with Diamond-Like Carbon (DLC) electrodes for US-RDC

RPC with **DLC** electrodes (**DLC-RPC**)

- RPC → Fast response (< 1 ns)
 High detection efficiency (by multi layering)
 → In MEG II, stacked up to 4 layers due to material budget requirements
- ➤ DLC → Small material budget (by sputtering directly onto thin polyimide films) Controllable resistivity (by changing film thickness)

>In this talk, status of radiation-hardness of DLC-RPC

><u>Yamamoto</u> presents development of DLC-RPC with improved electrode (<u>4pA421-2</u>)

Li presents time resolution of DLC-RPC (<u>4pA421-3</u>)

Outline

>Introduction

Radiation-hardness of DLC-RPC

- Requirements of radiation-hardness
- Neutron irradiation test
- Results of irradiation test
- Summary and Prospects

Radiation-hardness of DLC-RPC

Evaluation the ageing of DLC-RPC performance due to irradiation

→ Evaluation of irradiation doses by amount of charge flowing over DLC electrodes

➢Requirement of MEG II

 60 weeks operation in <u>low-momentum</u> and <u>high-rate</u> muon beam 28 MeV/c
 4 MHz/cm²

Estimation of irradiation doses in muon beam

- (Current) = (Charge) × (hit rate)
 - $\boldsymbol{\cdot}$ Average avalanche charge \rightarrow 3 pC
 - Sufficient charge for detection efficiency
 - At a centre rate of 4 MHz/cm^2
 - \rightarrow Current = 12 μ A/cm²
 - $\rightarrow \sim \mathcal{O}(100) \text{ C/cm}^2 \text{ (for 60 weeks)}$

Neutron irradiation test

>Neutron irradiation facility in Kobe Univ.

- $\cdot \ ^9\text{Be} + \text{d}
 ightarrow \ ^{10}\text{Be} + n + 4.35 \ \text{MeV}$
 - Deuteron energy : 3.0 MeV
 - Neutrons energy : Peak at ~2.5 MeV
- \cdot Number of neutrons $\mathcal{O}(10^8) \ n/s$

Accelerated ageing tests on DLC-RPC by neutrons

High energy deposit of recoil nuclei due to neutrons

 $\boldsymbol{\cdot}$ Focus only on the integral charge due to neutrons

Location of the detector

JPS autumn - 6pA421-1 - Masato Takahashi

Setup of neutron irradiation

Setup of HV scan with Sr90

>Check the performance transition due to neutron irradiation

Outline

>Introduction

Radiation-hardness of DLC-RPC

Results of irradiation test

- Status during irradiation
- DLC-RPC performance with Sr90
- X-ray Photoelectron Spectroscopy
- Problems of discharge

Summary and Prospects

DLC-RPC status during irradiation

6 Sept. 2022

JPS autumn - 6pA421-1 - Masato Takahashi

DLC-RPC status during irradiation

6 Sept. 2022

JPS autumn - 6pA421-1 - Masato Takahashi

Total charge due to neutron irradiation

HV current [µA]

Result of performance test with Sr90

>No deterioration in performance seen

- 1st and 2nd, Al readout was not in place
- From 3rd and 6th, agreement at ~ 5%

RPC detection efficiency

Surface condition survey

>Using X-ray Photoelectron Spectroscopy

- Survey for non-irradiation and irradiation electrode sample
- Fluorine build-up on DLC due to long-term irradiation
 - Fluorine used in gas (R134a/SF6/iso C4H10 = 94/1/5)
- No effect of fluorine on performance can be seen at present

Discharge problems

Long-term operation hampered by discharges

 $\boldsymbol{\cdot}$ Cannot operate w/o opening and cleaning the chamber

Discharge due to dust, especially around pillars

- · It has not been possible to determine whether it is neutron-specific
 - Caused by large clusters of neutrons?
- \rightarrow Plans for testing with other RI source

Outline

>Introduction

- **Radiation-hardness of DLC-RPC**
- Results of irradiation test
- Summary and Prospects

Summary

>RPC with DLC electrodes is under development for MEG II US-RDC

• Several stringent requirements are imposed because of the low-momentum and high-rate muon beam passage

Evaluated Radiation-hardness one of the requirements

- Using neutron accelerated facility
- Not yet up to the required irradiation level
- \cdot Pulse height distribution is agreement at $\sim 5\%$
 - \rightarrow No deterioration in this accuracy was observed

Problem and remarks

- Fluorine accumulation on DLC
- Long-term operation was unstable due to discharge around pillars
 - It has not been possible to distinguish whether it is a neutron-specific

Prospects

Need more irradiation and longer periods of operation

- Irradiation tests will be carried out using the X-ray generator in KEK Platform-C
 - $\boldsymbol{\cdot}$ Isolating the unique effects of neutrons

Now in progress

Backup

e⁺ distribution from Radiative Muon Decay

Differences b/w conventional RPC and DLC-RPC

>The voltage drop due to high current on resistive electrodes

- $\boldsymbol{\cdot}$ Current paths are different between conventional and surface type
- ➡ In surface RPC, the distance between conductors affects voltage drop

Diamond-Like Carbon (DLC)

>Amorphous structure with graphite (sp^2) and diamond (sp^3) bonds

- sp²: Electrically conductivity
- sp³: Insulating properties

≻Features:

- \cdot High-definition patterning (< 10 $\mu m)$
- \cdot Wide range of surface resistivity can be set $(50\ k-3\ G\Omega/sq)$
 - Film thickness adjustment
 - Nitrogen doping
- \cdot High adhesion to polyimide
- Chemically stable

Comparison of diamond, DLC and graphite structures Ref) <u>https://nippon-itf.co.jp/technical/article/about-dlc.html</u>

Neutron flux in MEG II environment

DLC-RPC will be installed in pos.B)

- pos.B) Total flux : 11.0 $n/s/cm^2$
- Neutron irradiation test) Flux : $6.0 \times 10^7 n/s/cm^2$

A. Baldini, et al, "Neutron background measurements in the $\pi E5$ area.", (2007)

Tandem electrostatic accelerator

Changing setup

Frequent discharges around pillars

- Concerns about the effects of neutrons on the pillar material
- \rightarrow Neutron irradiation to pillar material
- >No particular changes were observed
 - Rough setup
 - · Low irradiation dose

Mean of pulse height distributions

Pulse height mean