

MEG II実験背景事象削減に向けた 高レート耐性DLC-RPCの 高抵抗電極の開発

山本 健介 (東大理) 他MEG IIコラボレーション

2022年9月6日(火) 2022年日本物理学会秋季大会

6 Sept. 2022

Development of resistive electrodes of high-rate capable DLC-RPC for background reduction in MEG II experiment

<u>Outline</u>

- Introduction
 - Upstream RDC for MEG II
 - DLC-RPC
 - Motivation for new resistive electrode
- Resistive electrode production
- Performance test
- Summary and prospects

MEG II and RDC

 $ar{
u}_{\mu}$

U

 ν_e

Tagged

(~52.8 MeV)

• RDCs are detectors to tag BG- γ from Radiative Muon Decay (RMD)

DLC-RPC for MEG II

- Multi layers for higher detection efficiency
 - $\epsilon_n = 1 (1 \epsilon_1)^n$
- 4 layers limited for suppression of material budget
 - . Low-momentum μ^+ beam passes through the detector

Rate capability & scalability

- Large current on resistive electrodes at high rate
- → Voltage drop δV reduces effective applied HV V_{eff}
- → Gas gain reduction

Motivation for new electrode

	Requirement	Prototype performance
Material budget	0.1% X ₀	0.1% X ₀
Rate capability	4 MHz/cm ²	1 MHz/cm ²
Radiation hardness	60 weeks operation	? Previous talk
Detection efficiency	90% for MIP	60% with single layer
Timing resolution	l ns	170 ps (Next talk)
Detector size	20 cm diameter	2 cm squared

- HV supply segmented in new resistive electrode
 - Conductive pattern deposited on DLC
- → Higher rate capability and better scalability

<u>Outline</u>

- Introduction
- Resistive electrode production
 - Production flowchart
 - Conductive pattern on DLC
 - Spacer formation
- Performance test
- Summary and prospects

Production flowchart

1 - DLC sputtered on polyimide (PI) film

3 - Insulation cover deposited

- 25 µm-thick photo-resist
- Deposited on conductive pattern and DLC boundary

2 - Conductive pattern implemented

4 - Spacers formed

- ~160 µm-thick photo-resist
- Doubly accumulated for >300 µm gap thickness

Conductive pattern structure

6 Sept

0倍

剥がれなし

Spacer formation

- Previous spacer material production cancellation
- → New spacer material used
 - >300 µm-thick spacers cannot be formed
- Strategies for enough gap thickness
 - Form ~200 µm-thick spacers
 - Doubly accumulate spacers with precise alignment

300 µm gap thickness needed for enough efficiency

Produced electrode

Good connection between Cr & DLC

Good alignment

<u>Outline</u>

- Introduction
- Resistive electrode production
- Performance test
 - Setup
 - Gap thickness non-uniformity
 - Performance
- Summary and prospects

HV application system

(Conventional) bulk RPC

DLC-RPC

Readout

- DLC-RPC can apply HV to each layer
 - Absolute HV value can be small
 - Operate each layer independently

Gap thickness non-uniformity

Non-uniformity among different layer

Different gap thickness among different layers

To be controlled for uniform gap thickness

Performance with only single layer

<u>Outline</u>

- Introduction
- Resistive electrode production
- Performance test
- Summary and prospects

<u>Summary</u>

- High-rate capable DLC-RPC is under development for background reduction in MEG II experiment
- Improved resistive electrode developed
 - Conductive pattern implemented on DLC
 - Spacers formed and accumulated
- Performance tested
 - 46% detection efficiency achieved with single layer
 - 90% detection efficiency achievable with 4 layers
 - Gap thickness non-uniformity found

<u>Prospects</u>

- Operation with all the layers
 - Gap thickness to be controlled
- Performance evaluation with
 - β -ray at $\mathcal{O}(100 \text{ kHz/cm}^2)$
 - μ^+ beam at 4 MHz/cm² at PSI

- Actual detector production and construction
- Aim at installation to MEG II in 2023 physics run

MEG II experiment

- . MEG II searches for $\mu^+ \to e^+ \gamma$ decay with the sensitivity of 6×10^{-14}
 - SM + ν osc: $\mathscr{B}(\mu^+ \rightarrow e^+ \gamma) \sim 10^{-54}$
 - . BSM (SUSY-GUT, SUSY-seesaw): $\mathscr{B}(\mu^+ \rightarrow e^+\gamma) \sim 10^{-11} 10^{-15}$

MEG II signal and background

- MEG II searches for $\mu \to e\gamma$ decay, one of charged lepton flavour violation (cLFV) channels
- Dominant background is accidental coincidence of $\mathrm{BG}\text{-}e^+$ and $\mathrm{BG}\text{-}\gamma$

Requirements for upstream RDC

- 1. <0.1% X_0 material budget
 - μ beam with 21 MeV/c must pass through the detector
- 2. Rate capability for $10^8 \mu/s$ (4 MHz/cm²)
- 3. Radiation hardness for >60 weeks operation
- 4. 90% efficiency for RMD e^+ with 1-5 MeV
- 5. 1 ns timing resolution
- 6. 20-cm diameter detector size

High-rate capable RPC with Diamond-Like Carbon electrodes for upstream RDC

Sheet resistivity

6 Sept. 2022

24

<u>Strip alignment</u>

Damages in electrodes

カプトンを突き抜けて導通している 一度掃除したら導通しなくなったが、1200 Vあたりまでかけると再発

Damages in electrodes

Anode

Cathode