

次世代 $\mu^+ \rightarrow e^+ \gamma$ 崩壊探索実験のための 光子ペアスペクトロメーターの開発

-シミュレーションによる測定器設計の最適化-

横田凜太郎

池田史,岩本敏幸^A,内山雄祐^A,大谷航^A,潘晟^A,松下彩華,森俊則^A,山本健介 (東大理,東大素セ^A)

2022年9月7日日本物理学会秋季大会

Outline

- Introduction
 - MEG II & New $\mu \rightarrow e \gamma$ experiment
 - \cdot Pair spectrometer with active convertor
- Current status and considerations
- Performance study with simulation
- Summary and prospect

Outline

- Introduction
 - MEG II & New $\mu \rightarrow e \gamma$ experiment
 - Pair spectrometer with active convertor
- Current status and considerations
- Performance study with simulation
- Summary and prospect

$\mu \rightarrow e \gamma$ Decay

- Charged lepton flavor violation \rightarrow strong evidence for BSM
- Characteristics of decay
 - same energy: $E_{\gamma}, E_e \sim 52.8 \text{ MeV}$
 - back-to-back
- same timing
- MEGII is searching for $\mu \rightarrow e \gamma$ decay at Paul Scherrer institute (PSI) Target sensitivity : Br (6×10⁻¹⁴)

New experiment for $\mu \rightarrow e \gamma$

- High intensity muon beam is planed at PSI (2027-2028)
 - \rightarrow 100 times higher intensity ~ 10¹⁰ µ/s
 - \rightarrow New concept experiment
 - requirement for high resolution and high rate capability
- 1. Photon pair spectrometer
 - \rightarrow higher resolutions ($\Delta E, \Delta t, \Delta x$) angle measurement
- 2. Positron spectrometer
 - \rightarrow high rate capability

3. Separate active targets

 \rightarrow higher vertex resolution, further BG suppression

$$\Rightarrow$$
Target sensitivity: Br $_{\mu \rightarrow e \gamma} \left(\mathcal{O} \left(10^{-15} \right) \right)$

Pair spectrometer with active converter

- Pair spectrometer for γ-ray measurement
 - Advantages

high resolutions (energy, position) angle measurable

• difficulty

energy loss in convertor : invisible

- Possible performance improvement with active converter
- · γ ray converts in scintillator
- · can measure energy deposit in convertor
- · can measure timing

Outline

- Introduction
 - MEG II & New $\mu \rightarrow e \gamma$ experiment
 - Pair spectrometer with active convertor
- Current status and considerations
- Performance study with simulation
- Summary and prospect

Considerations for active converter

Material

evaluation : conversion prob. energy resolution

- Convertor's thickness
- Pileup hit by returning conversion pairs
- \rightarrow incorrect deposit energy
 - · can be mitigated by "segmentation"

Material & Thickness study by S. Ban

- Current status
- Material and thickness were studied by MC
- \rightarrow LYSO (thickness: 3 mm) seems to be preferred
- No magnetic field implemented
- \rightarrow effect of pileup was not studied
- This study

Optimize segmentation taking into account pileup hit

→selection range [51.7 MeV~51.8 MeV]

Outline

- Introduction
 - MEG II & New $\mu \rightarrow e \gamma$ experiment
 - Pair spectrometer with active convertor
- Current status and considerations
- Performance study with simulation
- Summary and prospect

Simulation method

MC simulation "Geant4"

• physics model : Livemore

Configuration <Fix> Scintillator: LYSO Magnet field: 2 T (vertical, uniform to the position) <Parameter> thickness:1, 2, 3, 4, 5, 6 mm segmentation x (parallel to magnet field) : 25, 50, 100, 125 mm y (vertical to magnet field) : 2.5, 5, 10, 12.5 mm

- \cdot Evaluating efficiency
- \cdot E selection is same to the previous research
- \cdot considering pileup
- \rightarrow Optimize segment size

Examples of event display (non-pileup)

width: 4mm segment: 10 mm x 100mm

Examples of event display (pileup)

2022/9/7

Х

Efficiency

Efficiency is evaluated

by counting the number of events meeting the following conditions.

- \cdot conversion event
- reconstruct Energy
 - = (deposit E in converter) + (kinematic E of e-e+)
 - ~ <u>51.8 MeV</u>
- \cdot no pileup

Input E_{γ} : 52.8 MeV

- loss 1.022 MeV (pair creation)
- · δE = 100 keV (from ideal γ detector's resolution)
- % tracker's resolution is not considered

example: segment: width: 12.5 mm length: 25 mm

 \Rightarrow Thickness 4 mm has the highest efficient in this segmentation.

Efficiency

• segment

width: 12.5mm length: 25mm thickness: 4mm is optimal efficiency 2.68% for 1 layer

- The efficiency decreases as the y-direction segment becomes smaller
- \leftarrow This seems to be due to the lack of accurate measurement of the deposit energy for events that cross between the segments.

This problem will need to be corrected

Efficiency by segment

Efficiency for the number of Layer

Best geometry: LYSO, 12.5 mm \times 25 mm \times 4mm (width \times length \times thickness)

Development of Photon Pair Spectrometer for Next Generation $\mu^+ \rightarrow e^+\gamma$ Experiment : Optimization of Detector Design by Simulation (7pA442-1)

2022/9/7

Outline

- Introduction
 - MEG II & New $\mu \rightarrow e \gamma$ experiment
 - Pair spectrometer with active convertor
- Current status and considerations
- Performance study with simulation
- Summary and prospect

Summary & prospect

- New concept of $\mu \rightarrow e \gamma$ experiment is planned now
- Consider the best material as active converter
- Optimize segment size considering magnetic field
- High efficiency for each parameters
 - thickness \rightarrow 4mm
 - segmentation \rightarrow width: 25mm, length: 12.5mm
- Prospect
- Need estimate for angle measurement
- Introduce tube type convertor

2022/9/7

Opitimal thickness by Segment

memo

・スライドの流れ

背景(μeγ崩壊/新実験計画/検出器設計)x3~4/現状(問題提起、先行研究)x2/手法(なにをしたか、 目標)x1~2/結果x2/考察(未解決なところも)x1/まとめ、展望x1

各スライドの主張をはっきり

Back up

Pair Spectrometer with Active Convertor

- Motivation
- MEGA experiment at LAMPF (1985-1999)
- · Detection efficiency ~ 5%
- Missing energy in Convertor & Low energy resolution

 \rightarrow "Active Convertor" to measure missing energy

Thin scintillator(1mm)

Thick scintillator(3mm)

E=(E of e-e+) + deposit E in segment Histogram is after segment exception

- Thin Scintillator has a lot of pileup because of many same position turn & low conversion probability
- \rightarrow Few correct events
- Thick Scintillator has a lot of Bremsstrahlung
- \rightarrow E reconstruct not correct

2022/9/7

: Optimization of Detector Design by Simulation (7pA442-1)