### MEG II 実験2021年物理ランに関する報告 - ガンマ線測定の現状と課題-

日本物理学会 2022年 年次大会 (オンライン開催) 15aA562-5

小林暁 (東大理)、 他MEG IIコラボレーション Satoru Kobayashi on behalf of the MEG II collaboration The University of Tokyo





THE UNIVERSITY OF TOKYO





- Introduction
  - Liquid Xenon gamma-ray detector
- 2021 run
  - Goal
  - Non-uniformity of energy reconstruction
  - Systematics of PDE measurement
  - Data reduction
- Summary & Prospects

2

# Liquid Xenon detector upgrade

| MEG II LXe Detector | Performance             | MEG       | MEG II<br>(design) | MEG II<br>(measured) |
|---------------------|-------------------------|-----------|--------------------|----------------------|
| 4092 MPPC 668 PMT   | Position resolution[mm] | 5 – 6     | 2.5                | 2.5                  |
|                     | Energy resolution[%]    | 1.7 – 2.4 | 1.0-1.1            | 1.7-1.8              |
|                     | Time resolution[ps]     | 62        | 50 - 70            | (80)                 |
|                     | Efficiency[%]           | 63        | 69                 | -                    |

- The entrance face is covered with 4092 VUV-sensitive MPPCs.
  - Improve uniformity of light collection, energy & position resolution.
- Improvement of position and energy resolution is observed.
- The full electronics are installed in 2021.
  - Before the installation, only ~1000 channels were read out.

## 2021 RUN – Goal -



#### Goal

- Detector commissioning with the full electronics.
- Start a short physics data acquisition.
- Detector performance measurement.

# Difficulties to start physics run



- Hardware requirement: data rate cannot exceed 100 MB/s.
  - 20 MB/s is the projected rate at the design phase.
- LXe detector has a dominant impact on the data rate.
  - MEG trigger rate heavily depends on gamma-ray energy threshold.
  - LXe detector has the largest number of channels (4760).
- Requirement for LXe detector
  - Good online energy uniformity and resolution.
  - Reduce data size per event: Data reduction.

# **Online Energy Reconstruction**



- Online energy reconstruction for trigger:
  - Use amplitude of sum waveform weighted with calibration constants
    - Gain & Photon Detection Efficiency: PDE.

Satoru Kobayashi

- In 2021, a large non-uniformity of online energy was observed.
  - Systematic bias of PDE calibration was the most probable reason.
- In the beam time, it was temporarily solved by an iterative weight optimization.

# Systematics of PDE calibration

Number of photo-electrons

 $PDE \sim PDE_{MC} \times N_{phe,Data}/N_{phe,MC}$ 

Nphe vs Nphe , PM4759, OUTER, PM 4759 Nphe<sub>Data</sub> 35 30  $\square \alpha$  source 25 — Linear Fit 20 15 10 Slope: 1.22 <sup>2</sup>/NDF: 1.86 10 20 30 40 Nphe<sub>MC</sub>

Satoru Kobayashi

Detector inner wall



- PDE of MPPC and PMT is measured with <sup>241</sup>Am sources.
  - MC simulation is used to estimate the number of photo-electrons.
- Systematics comes from discrepancy between MC and reality.
- Default MC simulation had no reflection at Aluminum PMT holder.

# Systematics of PDE calibration



- Scanned reflectivity in MC simulation between 0 and 1.
  - Similarity of light distribution was defined with alpha dataset.
- 50% reflectivity was the best configuration to simulate the reality.
- Uniformity of MPPC PDE was improved with 50% reflectivity MC.
  - With default MC, MPPC close to edges had high PDE than central ones.

## Data reduction



- Impact of data reduction was already studied (2017 spring JPS, 小川)
  - Negligible impact on pileup analysis & reconstruction.
- Waveform data was reduced down to ~30% by rebin.
  - Only the rising edge of large pulse matters for the time reconstruction.
  - Waveform with < 10 mV peak: entire waveform was rebinned by eight.</li>
  - Waveform with > 10 mV peak: falling edge was rebinned by a factor of 4-32.

#### Satoru Kobayashi

# Summary

- MEG II started physics run to search for  $\mu \rightarrow e\gamma$  in 2021.
- The hardware limitation of the data rate was a major difficulty to realize the physics run.
- DAQ at  $5 \times 10^7 \mu/s$  was achieved with following solutions.
  - Data reduction by rebin.
  - Temporal solution to improve the uniformity of online energy.
- Systematic bias of PDE calibration derived from a discrepancy between data and MC was studied.
  - Uniformity was improved with optimized reflectivity of Aluminum PMT holder.

- Toward physics analysis :
  - Analysis on calibration measurements.
    - Radiation damage of MPPC: 17aA572-10, 吉田
  - Fix time and energy reconstruction & correction.
- In 2021, energy & time resolution were measured with the full electronics.
  - Analysis is in progress.
  - Time resolution measurement: 16aA573-9, 松下
- 2022 run requires PDE recovery by thermal annealing, and it is ongoing: 17aA572-10, 潘

11

# Backup

Satoru Kobayashi

12

# **Charged Lepton Flavor Violation**



- Rates are too small  $(Br(\mu \rightarrow e\gamma) \sim 10^{-54})$  in the SM.
- Large enhancement is predicted by new physics.
- High energy scale beyond LHC is indirectly accessible.

# $\mu \rightarrow e\gamma$ Search



- $\mu \rightarrow e\gamma$  decay: two-body decay
  - Main background: accidental
    - Positron from Michel decay + accidental gamma-ray.
  - Key: Precise measurement of positron + gamma-ray to discriminate signal and BG.

# MEG II experiment



- MEG II will search for decay
  - Goal: Br( $\mu \rightarrow e\gamma$ ) ~ 6 × 10<sup>-14</sup> in 3 years of data acquisition.
  - Even higher intensity muon beam  $(7 \times 10^7 \mu/s)$
  - Detector upgrade (× 2 resolution improvement for each detector)
- Liquid Xenon gamma-ray detector measures the position, energy, and timing of the incident gamma-ray.
  - 900 L liquid xenon + VUV-sensitive photosensor.

# 2021 RUN – Calibration Overview -

| Source                      | Purpose                | Frequency        |  |
|-----------------------------|------------------------|------------------|--|
| LED                         | MPPC & PMT Gain        | 2 times per day  |  |
| Alpha-ray from 241Am source | MPPC & PMT PDE         | 2 times per day  |  |
| 9 MeV gamma-ray             | Light yield monitoring | 5 times per week |  |
| 17.6 MeV gamma-ray          | Light yield monitoring | 3 times per week |  |
| Cosmic-ray                  | Light yield monitoring | Daily            |  |

- Photo-sensor performance was monitored with intrinsic calibration sources (LED and Am source).
- Energy scale was monitored with gamma-ray sources and cosmic-ray.

# 2021 RUN – Sensor Calibration -



- Photosensor performance was frequently monitored with intrinsic calibration sources (LED and Am source).
- Radiation damage during 2021 run:
  - PMT gain: 840k -> 750k (11% decrease)
  - MPPC PDE: 8.4% -> 5.6%

## 2021 RUN – Detector Response -



- The detector response during the beam time was monitored with
  - 9 MeV gamma-ray from thermalized neutron capture.
  - 17.6 MeV gamma-ray from
  - ~170 MeV Cosmic-ray energy peak.

# 2021 RUN – Energy Scale -



• The energy scale must be measured with a better precision than the energy resolution (1.8%).

Satoru Kobayashi

#### RUN2021: Charge Exchange(CEX) Measurement



- Uniformity of the energy scale and energy resolution was measured with CEX setup.
- 21 out of 24 patches are scanned by moving the BGO detector.
- The full scan over the entire detector was not completed due to the short livetime of the LH2 target.
- The analysis of the energy resolution and efficiencies are in progress.

Satoru Kobayashi

# Energy reconstruction (CWLi data)

PDE based on Nominal MC (no reflection)

PDE based on Best fit MC (50% reflection)

Nsum2 vs v

Satoru Kobayashi

Nsum2 vs v



- Nsum2: weighted sum of the number of collected photons
- V-dependence is smaller with the PDE based on best-fit MC.

#### JPS spring (Online) | 15 - 19 March, 2022 | 15aA562-5

# Method



- Update weights of all sensors iteratively so that they give a sharp monochromatic energy peak.
- Long CW data (#396904) are used.
  - The statistics are important to avoid over-fitting.
- Iteration: 500 steps (10 steps / 1 run).

### Method – Iterative update of weight -



i: sensor j: iteration step

- Iterative update to minimize Loss.
  - Loss: averaged distance between nsum2 and npeak(energy peak).

- Data size w/o reduction: 20 MB / event, 9 MB for LXe.
  - Reduction by a factor of 2-3 was necessary for 2021 run.

24