

Atsushi Oya On behalf of the MEG II collaboration

<u>Outline</u>

- MEG II experiment
 - Motivation and principle
 - Overview of event reconstruction
- Positron track reconstruction
 - Tracking detector
 - Reconstruction
 - Momentum resolution
 - Efficiency
- Summary and prospect

Motivation and principle of MEG II experiment

180°

52.8 MeV

- $\mu \rightarrow e\gamma$ search at MEG II
 - CLFV decay, forbidden in SM
 - Target sensitivity: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ in 3 years \rightarrow Indirect probe of new physics up to O(10 TeV) scale
- Experiment strategy
 - Signal
 - Identified by kinematics
 - Statistics: $N_{sig} \propto R_{\mu} \cdot T \cdot Br(\mu \rightarrow e\gamma) \cdot \epsilon$
 - Main BG
 - Accidental coincidence of BG-e & BG- γ
 - $N_{BG} \propto R_{\mu}^2 \cdot T \rightarrow DC$ beam of PSI
 - Identified by kinematics difference from signal
 - $N_{BG} \propto \delta E_e \cdot \delta E_{\gamma}^2 \cdot \delta \theta^2 \cdot \delta T$ → High resolution measurement

	Signal	BG
$e\gamma$ time difference	Same time	No correlation
$e\gamma$ direction	Opposite	No correlation
E _e	52.8 MeV	< 52.8 MeV
E_{γ}	52.8 MeV	< 52.8 MeV

Experimental method of MEG II

- MEG II apparatus
 - Positron detection with spectrometer
 - Bending: COBRA magnet
 - Tracking: Cylindrical drift chamber (DCH)
 - Timing: Pixelated timing counters (TC)
 - Gamma detection with LXe detector
 - DAQ: Full waveform acquisition with DRS4
- Event reconstruction
 - Positron measurement
 - t_e measured at TC
 - Decay vertex, E_e, TOF from target to TC from DCH tracking
 - LXe detector measurement (15aA562-5)
 - E_{γ} , γ reaction point, t_{γ} at reaction point in Lxe
 - t_{γ} at vertex reconstructed with TOF correction

<u>Outline</u>

- MEG II experiment
 - Motivation and principle
 - Overview of event reconstruction
- Positron track reconstruction
 - Tracking detector
 - Reconstruction
 - Momentum resolution
 - Efficiency
- Summary and prospect

DCH in MEG II

- DCH tracking detector
 - Cylindrical stereo geometry of wires
 - 128 readout cells × 9 layers
 - Gas: He + 10% iso- C_4H_{10} + 0.5% O_2
- Operation in 2021 run
 - Stable operation achieved in muon beam
 - Hit rate of 1 2 MHz on each wire
 - Full signal readout for the first time
 - Some bad readout channels found
 - Operated with missing wires

Reconstructed tracks

- Successful tracking demonstrated in 2021 for the first time
 - Michel positron (bended)
 - Cosmic-ray (straight)
- Use of Michel tracks
 - Performance evaluation
 - Calibration
 - Normalization
- Use of cosmic tracks
 - Calibration
 - Detector alignment

Necessary tools are ready for physics analysis

Efficiency estimation

- Definition of efficiency
 - Contribution to MEG II statistics
 - Counted number of Michel positron $\times p_e$ dependence correction
 - Expected number of Michel positron in acceptance region
 - 52.8 MeV positron efficiency in the acceptance region
- Efficiency evaluation
 - Results at different stopping rate
 - Efficiency uncertainty: \pm 5 % uncertainty
 - Decrease at high rate more significant than MC expected
 - Possible cause of decrease
 - Inefficiency in hit finding due to pileup
 - Inefficiency in track finding

Muon stop/sec	3.5 e7	4.6e7	5.8e7
Estimated efficiency	~60 %	~50 %	~40 %

Momentum resolution

- Michel fitting
 - Fit with (theory spectrum × acceptance function) \otimes response function
 - Acceptance: Parametrize momentum dependence of efficiency with error function
 - Response function: Parametrize detector's response with double gaussian

Core resolution: $184 \pm 3 \text{ keV}$

- - 50 keV overall shift of edge
- Emission angle dependence
 → Further improvement expected with better alignment

cost

Fit parameter

- Core resolution: 184 keV
- Acceptance: 48.4 MeV mean, 2.2 MeV sigma

Theory spectrum:

https://journals.aps.org/pr/abstract/10.1103/PhysRev.113.1652

Fit value for mean of response function

Calibration: Hit resolution

- Distance resolution
 - 0.15 mm resolution
 → × 1.5 worse than MC
 - Calibration in progress
 - Time to distance relation
 - Timing calibration

hit – track residual

Measured distance – distance from reconstructed track [cm]

- Distance measurement is not completely calibrated
 → Further improvement expected
- Aiming < 150 keV momentum resolution after improvement

<u>Outline</u>

- MEG II experiment
 - Motivation and principle
 - Overview of event reconstruction
- Positron track reconstruction
 - Tracking detector
 - Reconstruction
 - Momentum resolution
 - Efficiency
- Summary and prospect

Summary

- Successful positron tracking demonstrated in 2021 run
 - 184 keV resolution achieved with a large possibility of improvement
 - 40-60 % efficiency depending on the beam rate
 - Already better than the performance in MEG
 - Further improvement still expected

	Momentum resolution	Efficiency
Observed	184 keV → Aiming 150 keV with calibration improvement	60 % @ 3.5e7 stopping rate
MEG value	380 keV	30 % @ 3e7 stopping rate

Positron reconstruction almost ready for physics analysis

<u>Prospect</u>

- Expected analysis improvement
 - Calibration
- Planned DCH hardware improvements
 - 2022 run
 - Recovery of dead channels: Suspected to be electronics issues
 - 2023 run and later
 - New DCH project ongoing
 - Missing wire problem will be fixed

Backup

14

Positron tracking

• Hit reconstruction

- Drift distance measurement
 - Necessary for both track finding & fitting
 - Drift time (up to 300 ns) + time to distance table
 - Drift time estimated with $t_{drift} = t_{dch} t_{TC}$
- Z position measurement
 - Necessary mainly for track finding (Track z reconstruction relies on stereo geometry)
 - Measured with time & charge difference at ends
- Track reconstruction
 - 1. Track finding with local pattern recognition
 - 2. Track fitting with GENFIT package
 - 3. Track refinement
 - Add hits missed in track finding
 - TOF correction to $t_{dch} t_{TC}$ measurement

Time resolution

number of TC hits with 52.8 \pm 0.1 MeV positron

Calibrations

- Parameters to be calibrated
 - Time to distance relation
 - Wire alignment
 - Time difference between each DCH wire/TC counter
 - Z position measurement
 - \rightarrow Calibration in progress. Better performance expected with better calibration

Hit reconstruction

- Z resolution
 - 6 cm core, 17 cm tail

hit z - track z

- D resolution
 - 0.15 mm core, 0.3 mm tail

18