MEG II 実験陽電子タイミングカウンター 2023-2024年データのキャリブレーションと 時間分解能評価

Calibration and time resolution evaluation of 2023–2024 dataset for Pixelated Timing Counter in the MEG II experiment

李 維遠, 他 MEG II コラボレーション

(東大理)

Core-to-Core Program

$\mu \rightarrow e \gamma$ search

- Lepton flavor violating two-body decay at rest; $E_e = E_{\nu} = 52.8$ MeV, back-to-back, and time coincident
- Standard Model (SM): Strictly forbidden without neutrino masses, far below experimental reach of $\mathcal{B} \sim 10^{-54}$ even with neutrino masses
- BSM: Many models predict observable branching ratio (e.g., SUSY-seesaw, SUSY-GUT)

Current search status

• The MEG II experiment at Paul Scherrer Institut; most stringent limit so far (2021–2022):

$$\mathcal{B}(\mu^+ \to e^+ \gamma) < 1.5 \times 10^{-13} (90\% \text{ C.L.})$$
 arxiv: 2504.15711

• DAQ continues through 2026; target sensitivity $\sim 6 \times 10^{-14}$

Main Background

 E_{e} +, $E_{\gamma} \sim 52.8$ MeV, near back-to-back, near time coincident

- e^+ source: Michel decay $\mu^+ \rightarrow e^+ \bar{\nu}_{\mu} \nu_e$
- \bullet γ source:
 - Annihilation $e^+e^- \rightarrow \gamma\gamma$
 - Radiative muon decay (RMD) $\mu^+ \to e^+ \bar{\nu}_{\mu} \nu_e \gamma$

$$\rightarrow R_{\rm BG} \propto R_{\mu} \cdot \delta E_{e^+} \cdot \left(\delta E_{\gamma}\right)^2 \cdot \delta \Theta_{e^+ \gamma} \cdot \delta t_{e^+ \gamma}$$

MEG II

High-rate DC muon beam × High-resolution detectors
Deliver large statistics with controlled background

—Maximizing sensitivity

e⁺

MEG II

High-rate DC muon beam \times High-resolution detectors Deliver large statistics with controlled background

—Maximizing sensitivity

What is MEG II? Comprehensive summary was presented by Kensuke (16aEK108-13)

Want to know more about detectors and analysis? Check talk by Atsushi, Sei, and Ryusei (16pEK104-7, 17aEK104-{6,7})

After 2026? Okay, let's talk about the future! Coming right after this talk by Rei (18pEK104-2)

MEG II

Pixelated Timing Counter (pTC) measures the timing of positrons in average ~40 ps

pTC Features

- 512 tiles of fast plastic scintillator, 256 for up/downstream each * high-resolution by multiple hits improves as $\propto 1/\sqrt{N_{\rm hit}}$
- Readout at both ends by seriesconnected arrays of six SiPMs
 - * Not sensitive to v position in the pixel
- Laser fiber embedded at the center per tile enables interpixel synchronization and performance monitoring

pTC Time Calibration

"Timing alignment" —two complementary method

■ Track-based:

$$\chi^2 = \sum_{i=1}^{\text{events hits}} \left(\frac{t^{\text{meas}} - (t_0 + \text{ToF} + \text{offset})}{\sigma} \right)^2$$

Calibrate offset to minimize χ^2

- Laser-based
 - Removes position-dependent biases in the track-based method
 - Defines upstream-downstream relative offset
 - Check & split calibration period

pTC Time Reconstruction & Resolution Evaluation

Time reconstruction

- ToF_i from track fit
- pTC reconstructed time:

$$t_{\text{pTC}} = \text{avg}(t_i^{\text{meas}} - \text{ToF}_i)$$

Resolution evaluation: Even-Odd method

- Select tracks with even number of hits (N_{hit})
- Split hits into even/odd indices
- Reconstruct t_{even} , t_{odd} independently
- Compare and evaluate time resolution according to $N_{\rm hit}$ $\sigma(t_{\rm pTC}) \approx \sigma(t_{\rm even} t_{\rm odd})/2$

pTC Time Resolution

- Weighted by the signal N_{hit} distribution from MC to gain overall time resolution
 - 2023: 43 ps
 - 2024: 41 ps
- 2023 shows ~ 4% degradation from 2022 —most likely due to irradiation damage
 - Laser monitor which shows pure contribution from each pixel has degradation of $\sim 6\%$ in ave.
- 2024 recovered to 2022 level
 - Thanks to partial renewal of 80 pixels
 - Unchanged pixels degraded by ~ 6 % due to long run period + suboptimal cooling
 - Newly installed pixels shows more than 50% resolution improvement

Pixel IQR band

RMD time offset

- Radiative muon decay (RMD): $\mu^+ \to e^+ \bar{\nu}_\mu \nu_e \gamma$
- Using RMD events to calibrate time offset for $t_{e\gamma}=t_{e^+}-t_{\gamma}$
- Observed an $\mathcal{O}(10 \text{ ps})$ bias correlated N_{hit} in 2021–2022 dataset
- Prior analyses used an ad-hoc N_{hit} correction

v position dependence

- The per-hit coordinate $v_{\rm fit}$ from track fits reveals a residual bias in $t_{\rm diff} = t^{\rm meas} t_{\rm pTC}$ of $\mathcal{O}(10~{\rm ps})$
- The bias exists in t_{pTC} as well

 → A few iteration with updated t_{pTC} to extract pure v dependency
- Validation with RMD is ongoing

v position dependence

- The per-hit coordinate $v_{\rm fit}$ from track fits reveals a residual bias in $t_{\rm diff} = t^{\rm meas} t_{\rm pTC}$ of $\mathcal{O}(10~{\rm ps})$
- The bias exists in t_{pTC} as well

 → A few iteration with updated t_{pTC} to extract pure v dependency
- Validation with RMD is ongoing

v position dependence

- The per-hit coordinate $v_{\rm fit}$ from track fits reveals a residual bias in $t_{\rm diff} = t^{\rm meas} t_{\rm pTC}$ of $\mathcal{O}(10~{\rm ps})$
- The bias exists in t_{pTC} as well

 → A few iteration with updated t_{pTC} to extract pure v dependency
- Validation with RMD is ongoing

Summary

- The MEG II experiment searches for $\mu \rightarrow e\gamma$; started in 2021 and will continue DAQ until 2026
- Calibration of pTC for 2023 and 2024 datasets have completed: time resolution of 43 ps and 41 ps.
- Time bias by v position of the hits in pTC is as large as $\mathcal{O}(10~\mathrm{ps})$, which likely to explain the time offset bias in $t_{\mathrm{e}\gamma}$

