Charged Lepton Flavor Violation Experiments

Giovanni Signorelli
INFN Sezione di Pisa - Italy
19–24 May, Bùzios, Brazil
Outline

• (Charged) Lepton Flavour in the Standard Model
• Observables towards new physics
• The “classical searches”
 • $\mu \rightarrow e\gamma$
 • $\mu \rightarrow 3e$
 • $\mu N \rightarrow eN$
• Status and perspectives
Flavor in the SM

• Unlike the quark sector, lepton flavor transitions are forbidden in the SM due to the vanishing neutrino masses
• Charged current interaction with the W field

\[J^\mu = \bar{d}_L^i \gamma_\mu U^d_L \, \bar{u}_L^j u_L^j + \bar{e}_L^i \gamma_\mu U^e_L \, \bar{\nu}_L^j \nu_L \]

V_{\text{CKM}}

• In the SM lepton flavor transition are forbidden
• Nevertheless neutrino oscillations were observed
 - Flavor transitions in the (neutral) lepton sector
 - vSM
charged Lepton Flavor Violation

- cLFV decays in the SM is radiatively induced by neutrino masses and mixings at a negligible level

\[\Gamma(\mu \rightarrow e\gamma) \approx \frac{G_F^2 m_\mu^5}{192\pi^3} \left(\frac{\alpha}{2\pi} \right) \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2_{23}}{M_W^2} \right) \]

\[\approx \frac{G_F^2 m_\mu^5}{192\pi^3} \left(\frac{3\alpha}{32\pi} \right) \left(\frac{\Delta m^2_{23} s_{13} c_{13} s_{23}}{M_W^2} \right)^2 \]

relative probability \(\sim 10^{-54} \)

- All SM extensions enhance the rate through mixing in the high energy sector of the theory (other particles in the loop...)

- Clear evidence for physics beyond the SM
 - background-free
- Restrict parameter space of SM extensions
Many processes

- LFV is related to "new" lepton-lepton couplings and effective operators

\[
\frac{1}{\Lambda} \ell_i \sigma_{\mu\nu} \ell_j F^{\mu\nu} \quad \frac{1}{\Lambda^2} \ell_i \gamma_\mu \ell_j (\bar{q}_k \gamma^\mu q_m + \bar{\ell}_k \gamma^\mu \ell_m)
\]

- A wide field of research
 - LFV decays
 - Anomalous magnetic moment for the \(\mu, \tau \)
 - Muon-to-electron conversion
 - (LFV in B-meson decays)
Processes are correlated

- Model-dependent correlations

Barbieri et al., Nucl. Phys B445 (1995) 225
...
Connections

- Collider physics
 - it is Super Symmetry + Grand Unification that predicts new particles in the loop.
 - alternate search for \((E/M_{\text{SUSY}})^N\) suppressed effects

- neutrino oscillations
 - mixing matrix in charged sector can be proportional to
 - PMNS
 - CKM

- muon \(g-2\)
 - \(a_\mu\) is the “diagonal” term
 - \(\mu\to e\gamma\) diagram is the “off-diagonal”

- SUPER Flavor factory
 - Investigates LFV in the \(\tau\to\mu, e \gamma\) decays

Barbieri et al., Nucl. Phys B445 (1995) 225
...
Connections

- Collider physics
 - it is Super Symmetry + Grand Unification that predicts new particles in the loop.
 - alternate search for $(E/M_{\text{SUSY}})^N$ suppressed effects

- neutrino oscillations
 - mixing matrix in charged sector can be proportional to
 - PMNS
 - CKM

- muon $g-2$
 - a_μ is the “diagonal” term
 - $\mu \rightarrow e \gamma$ diagram is the “off-diagonal”

- SUPER Flavor factory
 - Investigates LFV in the $\tau \rightarrow \mu, e \gamma$ decays

Barbieri et al., Nucl. Phys B445 (1995) 225
The CLFV wheel

\[\alpha \left(\frac{Z \alpha}{\pi} \right) \]

\[\mu \rightarrow e\gamma \]

\[\mu \rightarrow eee \]

\[\mu \rightarrow eN \rightarrow eN \]

\[\tau \rightarrow e\gamma \]

\[\tau \rightarrow \mu\gamma \]

\[(g - 2) \mu \]

\[B_{\mu e\gamma} \sim 10^{-12} \sim \left(\frac{\Delta a_\mu}{10^{-9}} \right)^2 \]

\[\propto \left(\frac{m_\tau}{m_\mu} \right)^{2/4} \]

\[\propto \left[\Delta a_\mu \right]^2 \]

\[\propto \left(\frac{\alpha_{e.m.}}{\alpha} \right) \]

\[\propto \tan^2 \beta \]

Common Models
Present limits

SINDRUM
$B(\mu Ti \rightarrow e Ti) < 4.3 \times 10^{-12}$
$B(\mu Au \rightarrow e Au) < 7 \times 10^{-13}$
$\mu \rightarrow e e e$
1×10^{-12}
1988

MEG@PSI
$\mu \rightarrow e \gamma$
2.4×10^{-12}
$\tau \rightarrow \mu \gamma$
$\tau \rightarrow e \gamma$
$(g - 2)_{\mu} \times \tan^2 \beta$

BNL E821
$3.3 \div 4.5 \times 10^{-8}$
$a_{\mu}^{\exp} - a_{\mu}^{SM} = (296 \pm 81) \times 10^{-11}$

SINDRUM II
$\mu \rightarrow e \gamma$
2.4×10^{-12}
running
$\tau \rightarrow \mu \gamma$
$\tau \rightarrow e \gamma$

2010
B-factories

2006

2004
a hint for NP?

2006

2013

1988

2013
Experimental effort

<table>
<thead>
<tr>
<th></th>
<th>Dedicated experiment</th>
<th>Multi-purpose experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exotic Searches</td>
<td>$\mu \rightarrow e\gamma$</td>
<td>$\tau \rightarrow \mu\gamma$</td>
</tr>
<tr>
<td></td>
<td>$\mu \rightarrow eee$</td>
<td>$\tau \rightarrow e\gamma$</td>
</tr>
<tr>
<td></td>
<td>$\mu^- N \rightarrow e^- N$</td>
<td>$K^0_L \rightarrow \mu e$</td>
</tr>
<tr>
<td>New Physics if seen</td>
<td>Experiment limited</td>
<td>$Z' \rightarrow e\mu$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tau \rightarrow 3\ell$</td>
</tr>
<tr>
<td>BSM physics</td>
<td>e, μ, n edm</td>
<td>$B \rightarrow \mu\mu$</td>
</tr>
<tr>
<td></td>
<td>$(g-2)_\mu$</td>
<td>$b \rightarrow s\gamma$</td>
</tr>
<tr>
<td></td>
<td>$(g-2)_e$</td>
<td>$\tau \rightarrow ev\nu$</td>
</tr>
<tr>
<td></td>
<td>$\pi^+(K^+) \rightarrow e^+\nu$</td>
<td>$\tau \rightarrow \mu\nu\nu$</td>
</tr>
<tr>
<td></td>
<td>$\pi^+(K^+) \rightarrow \mu^+\nu$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$K^0_L \rightarrow \pi^0\nu\nu$</td>
<td>$K^+ \rightarrow \pi^+\nu\nu$</td>
</tr>
<tr>
<td>NP if deviations from SM</td>
<td>Theory limited</td>
<td></td>
</tr>
</tbody>
</table>
Experimental effort

<table>
<thead>
<tr>
<th>Exotic Searches</th>
<th>Dedicated experiment</th>
<th>Multi-purpose experiment</th>
</tr>
</thead>
</table>
| New Physics if seen | $\mu \rightarrow e\gamma$
$\mu \rightarrow eee$
$\mu^- N \rightarrow e^- N$ | $\tau \rightarrow \mu\gamma$
$\tau \rightarrow e\gamma$
$K_L^0 \rightarrow \mu e$
$Z' \rightarrow e\mu$
$\tau \rightarrow 3\ell$ |
| Experiment limited | | |

| BSM physics NP if deviations from SM Theory limited | $e, \mu, n \text{ edm}$
$(g - 2)_\mu$
$(g - 2)_e$
$\pi^+(K^+) \rightarrow e^+\nu$
$\pi^+(K^+) \rightarrow \mu^+\nu$
$K_L^0 \rightarrow \pi^0\nu\nu$ | $B \rightarrow \mu\mu$
$K^+ \rightarrow \pi^+\nu\nu$ |

I will concentrate on the “classical” searches
65 years of searches

- Each improvement linked to beam and detector technology
- Trade-off between sub-detectors to achieve the best “sensitivity”
Complementarity

- Capability of different measurements to discriminate between models

\[\frac{m_\mu}{(1 + \kappa) \Lambda^2} + \frac{\kappa}{(1 + \kappa) \Lambda^2} \]
“Classical” searches

- Widespread in the world
- MEG
- Mu3e
- Mu2e - Deeme - Comet Phase I - II
Kinematics

\[\mu^+ \rightarrow e^+ \gamma \]

- 2-body decay
- Monoenergetic \(e^+, \gamma \)
- Back-to-back

\[\mu^- N \rightarrow e^- N \]

- Quasi 2-body decay
- Monoenergetic \(e^- \)
- Single particle detected

\[\mu^+ \rightarrow e^+ e^- e^+ \]

- 3-body decay
- Invariant mass constraint
- \(\Sigma p_i = 0 \)
Background

Kinematics
- 2-body decay
- Monoenergetic e^+, γ
- Back-to-back

Background
- Accidental background

Kinematics
- Quasi 2-body decay
- Monoenergetic e^-
- Single particle detected

Background
- Decay in orbit
- Antiprotons, pions

Kinematics
- 3-body decay
- Invariant mass constraint
- $\sum p_i = 0$

Background
- Radiative decay
- Accidental background
Beam requirements

Kinematics
- 2-body decay
- Monoenergetic e
- Back-to-back

Background
- Accidental background

Continuous Beam
- Quasi 2-body decay
- Monoenergetic e
- Single particle detected

Background
- Decay in orbit
- Antiprotons, pions

Pulsed Beam
- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Background
- Radiative decay
- Accidental background

Kinematics
- $\mu^+ \rightarrow e^+\gamma$
- $\mu^- N \rightarrow e^- N$
- $\mu^+ \rightarrow e^+ e^- e^+$

Continuous Beam
- $\mu^+ \rightarrow e^+\gamma$
- $\mu^- N \rightarrow e^- N$
- $\mu^+ \rightarrow e^+ e^- e^+$
µ→eγ signal and background

"Signal"

µ→eγ

µ⁺ → e⁺γ

- **E_e = E_γ = 52.8 MeV**
- **θ_eγ = 180°**
- **t_eγ ≈ 0**

"RMD"

µ → eννγ

µ⁺ → e⁺γ

- Event:
 - eN → eNγ
 - e⁺e⁻ → γγ

\[E_e = E_γ = 52.8 \text{ MeV} \]

\[\theta_eγ = 180° \]

\[t_eγ \approx 0 \]

"Accidental"

µ → eνν

- **B_{prompt} ≈ 0.1 × B_{acc}**
- **B_{acc} ≈ R_µ \Delta E_e \Delta E_γ^2 \Delta θ^2 \Delta t**

The accidental background is dominant and it is determined by the experimental resolutions.
MEG experimental method

- **μ**: stopped beam of $3 \times 10^7 \mu$ /sec in a 205 μm polyethylene target
 - PSI πE5 beam line: 29 MeV μ^+
- **e^+** detection
 - Magnetic spectrometer composed by solenoidal magnet and drift chambers for momentum
 - Plastic counters for timing
- **γ** detection
 - Liquid Xenon detector based on the scintillation light
 - Fast: 4 / 22 / 45 ns
 - High LY: $\approx 0.8 \times$ NaI
 - Short X_0: 2.77 cm
Some detector pictures

LXe detector

DC system

Beam Line

TC with fibers exposed
Calibration & Monitoring

Proton Accelerator

Li(p,γ)Be
LiF target at COBRA center
17.6MeV γ
~daily calib.
also for initial setup

Detected

Alpha on wires

PMT QE & Att. L
Cold GXe
LXe

Mott e⁺ scattering

Cosmic ray alignment

μ radiative decay

γ

π⁺ + p → π⁰ + n
π⁰ → γγ (55MeV, 83MeV)
π⁺ + p → γ + n (129MeV)
LH₂ target

Detector Calibration

Cosmic ray alignment

Nickel γ Generator

Lower beam intensity < 10⁷
Is necessary to reduce pile-ups

A few days ~ 1 week to get enough statistics

NaI

Cosmic ray alignment

9 MeV Nickel -line

LXe side

Beam

LXe side

Pneumatic actuator

MEG target

[Diagram of beam alignment and target setup]
Calibration & Monitoring

Proton Accelerator

Li(p,γ)Be
LIF target at COBRA center
17.6 MeV γ
~daily calib.

Alpha on wires

Laser

Relative timing calib.

Nickel Generator

9 MeV

NaI

Source (Cf) transferred by comp air → on/off

Is necessary to reduce pile-ups
A few days ~ 1 week to get enough statistics

Laser

 Illuminate Xe from the back

LiF target at COBRA center

LH2 target

µ radiative decay

0 → 0

0 + p → 0 + n (55 MeV, 83 MeV)

0 + p + n (129 MeV)

RMS < 0.2%

Energy scale (a.u.)

Number of events

Detector

Mott e+ scattering

Cosmic ray alignment

Calibration & Monitoring
• **2009+2010** analysis: BR(µ→eγ)< 2.4×10^{-12} @ 90%C.L.

• **2011** data
 - Doubled the **statistics**
 - Improved trigger and reconstruction **efficiency**
 - **Hardware modification**
 - BGO for calibration
 - Laser tracker system for drift chamber alignment

• **2009-2011 Analysis** improvements
 - **Reconstruction** improvements
 - γ-ray pileup unfolding
 - e⁺ waveform FFT noise reduction + revised track fitter

• **2012** in progress
2009-2011 fit result

- **Blind-box analysis strategy**
 - off-time sideband
 - off angle sideband

- **Three independent analyses**
 - different pdf implementation
 - Fit or input $N_{\text{RMD}}, N_{\text{BG}}$
 - Different statistical treatment (Freq. or Bayes)

- **Use of the sidebands**
 - our main background comes from accidental coincidences
 - RMD can be studied in the low E_γ sideband

\[N_{\text{sig}} = -0.4^{+4.8}_{-1.9} \]
\[N_{\text{acc}} = 2413.6 \pm 37 \]
\[N_{\text{RMD}} = 167.5 \pm 24 \]
Combined 2009 + 2010

- 90% C.L. Feldman-Cousins upper limit
 - 8×10^{-13} expected for no signal (sensitivity)

\[
\frac{\Gamma(\mu^+ \rightarrow e^+\gamma)}{\Gamma(\mu^+ \rightarrow e^+\nu\bar{\nu})} \leq 5.7 \times 10^{-13}
\]

PRL 17 May 2013
20 times better than previous limit!
Present & Future

• We have just started the 2013 data-taking (last year)

• MEG is expected to saturate its sensitivity with this year’s run

• In the meanwhile an upgrade was presented and accepted by PSI laboratory

1. Increasing μ^+-stop on target
2. Reducing target thickness to minimize e+ MS & brehmsstrahlung
3. Replacing the e+ tracker reducing its radiation length and improving its granularity and resolutions
4. Improving the timing counter granularity for better timing and reconstruction
5. Improving the positron tracking-timing integration by measuring the e+ trajectory up to the TC interface
6. Extending the γ-ray detector acceptance
7. Improving the γ-ray energy and position resolution for shallow events
8. Integrating splitter, trigger and DAQ maintaining a high bandwidth
MEGUP sensitivity

- Ultimate sensitivity at the few $\times 10^{-14}$ level
- Engineering run 2015
- Data taking 2016-2018

A. Baldini et al., MEG Upgrade Proposal, arXiv:1301.7225 [physics.ins-det]
Mu3e at PSI

• Search for $\mu \rightarrow e^+ e^- e^-$
 - 10^{-15} sensitivity in phase I
 - 10^{-16} sensitivity in phase II
• Project approved in January 2013
 - Double cone target
 - HV-MAPS ultra thin silicon detectors
 - Scintillating fibers timing counter
HIMB at PSI

- Muon rates in excess of $10^{10}/s$ in acceptance
- $2 \cdot 10^9/s$ needed for $\mu \rightarrow eee$ at 10^{-16}
- Not before 2017
\[\mu N \rightarrow e N \]

- Coherent muon capture on nucleus (Al is the candidate)
- Single **mono-energetic electron**
 - \(E_e = m\mu - B\mu - \text{recoil} \)
- Only **one particle** in final state
 - No (accidental) background limited
 - Unlike \(\mu \rightarrow e\gamma \) and \(\mu \rightarrow 3e \) there is no experimental “wall” until conversion rates \(O(10^{-18}) \)
 - It is anticipated that will provide the **ultimate sensitivity** to CLFV
- Background comes from
 - \(\mu \) decay-in-orbit (DIO)
 - Radiative muon capture
 - bkg n and \(\gamma \)-rays are produced
 - Beam related background (\(\pi \) and e contaminations)
 - high purity environment
 - curved solenoid (Dzhilkibaev and Lobashev, 1989)
 - pulsed beam with challenging extinction

\[(E\mu - E_e)^5 \]
\(~10^{-17}\) of the spectrum within the last MeV
$\mu N \rightarrow e N$ experiments: mu2e

- Mu2e @ FNAL and COMET @ J-PARC are quite similar in the outline

- p-beam hits a target
- solenoid collects π^- and let them decay to μ^-
- μ^- are transported to the capture target
- A pulsed beam allows a time window for events ⇒ needs high extinction

Starts in 2020
Data in 2022
SES ~ 2×10^{-17}
COMET: phase II

- COMET @ J-PARC has some differences

- **S-shape** instead of **C-shape**

- Detector has an extra curved magnet acting as an electron spectrometer

- Proton beam

- Production Target

- Pions

- Muons

- Capture target

- Transport

- Starts in 2020
 Data in 2022
 SES ~ 2×10^{-17}
COMET: phase I

- COMET @ J-PARC has some differences

Starts in 2016
Data in 2017
SES \(\sim 3 \times 10^{-15} \)

target will be placed at the center of the detector (à la Mu2e)

Phase-I Detector
- A cylindrical drift chamber (CDC) for the \(\mu \)-e conversion search
- A prototype ECAL and straw tube tracker for the background studies
In the meanwhile: DeeMe

- DeeMe at J-PARC aims at searching for $\mu N \rightarrow eN$ with a 10^{-14} sensitivity
- production target and conversion target are the same
- rotating silicon carbide target
- physics data taking planned to start in 2015

\[
p \rightarrow \pi \rightarrow \mu \rightarrow e
\]
Summary

- **CLFV activities** in the World
- Complements *flavor* physics from the lepton sector
- **MEG** improved the limit on $\mu \rightarrow e \gamma$
 - $5.7 \times 10^{-13} @ 90\% \text{ C.L.}$
 - Further improvement expected
- **MEG^\text{UP}**
 - Down to 6×10^{-14}
- **Mu3e** @ PSI
 - *Staged* approach waiting for a HIMB
 - $<10^{-16}$ level
- **Mu2e, DeeMe** and **COMET**
 - Intensive R&D for the realization of the experiments
 - **Staged setup** to test part of the techniques
 - 10^{-17} level
 - Towards 10^{-18} with future muon campuses (Project-X and PRISM/PRIME)
- **Complementarity** with τ, meson and exotic CLFV
The future: stay tuned!

E. C. Dukes, TAU2010
End of slides
Prospects for τ LFV at Belle II

- Belle II will collect $\sim 10^{11}$ τ-leptons (50/ab)
- Sensitivity depends on the background level
 - $\tau \rightarrow 3\ell$ still clean even at Belle II
 - For $\tau \rightarrow \mu \gamma$ better understanding of backgrounds, signal resolution and intelligent selections are needed
Summary Belle τ LFV results

48 modes searched for, U.L.s around $\sim 10^{-8}$
Super $\theta^+\theta^-$ factory sensitivity directly confronts New Physics models of CLFV

<table>
<thead>
<tr>
<th>Mode</th>
<th>BABAR ($\times 10^{-8}$)</th>
<th>Belle ($\times 10^{-8}$)</th>
<th>SuperB ($\times 10^{-8}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^\pm \rightarrow e^\pm \gamma$</td>
<td>3.3</td>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>$\tau^\pm \rightarrow \mu^\pm \gamma$</td>
<td>4.4</td>
<td>4.5</td>
<td>0.2</td>
</tr>
<tr>
<td>$\tau^\pm \rightarrow \mu^\pm \mu^+\mu^-$</td>
<td>3.3</td>
<td>2.1</td>
<td>0.08</td>
</tr>
<tr>
<td>$\tau^\pm \rightarrow e^\pm e^+e^-$</td>
<td>2.9</td>
<td>2.7</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Summary of results in LFV searches

<table>
<thead>
<tr>
<th>channel</th>
<th>limit</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(B^- \rightarrow \pi^+ e^- e^-)$</td>
<td>$< 2.3 \times 10^{-8}$</td>
<td>@90 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow K^+ e^- e^-)$</td>
<td>$< 3.0 \times 10^{-8}$</td>
<td>@90 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow K^{*-} e^- e^-)$</td>
<td>$< 2.8 \times 10^{-6}$</td>
<td>@90 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow \rho^+ e^- e^-)$</td>
<td>$< 2.6 \times 10^{-6}$</td>
<td>@90 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow D^+ e^- e^-)$</td>
<td>$< 2.6 \times 10^{-6}$</td>
<td>@90 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow D^+ e^- \mu^-)$</td>
<td>$< 1.8 \times 10^{-6}$</td>
<td>@90 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow \pi^+ \mu^- \mu^-)$</td>
<td>$< 1.3 \times 10^{-8}$</td>
<td>@95 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow K^+ \mu^- \mu^-)$</td>
<td>$< 5.4 \times 10^{-7}$</td>
<td>@95 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow D^+ \mu^- \mu^-)$</td>
<td>$< 6.9 \times 10^{-7}$</td>
<td>@95 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow D^{*+} \mu^- \mu^-)$</td>
<td>$< 2.4 \times 10^{-6}$</td>
<td>@95 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow D_s^+ \mu^- \mu^-)$</td>
<td>$< 5.8 \times 10^{-7}$</td>
<td>@95 % CL</td>
</tr>
<tr>
<td>$B(B^- \rightarrow D^0 \pi^- \mu^- \mu^-)$</td>
<td>$< 1.5 \times 10^{-6}$</td>
<td>@95 % CL</td>
</tr>
</tbody>
</table>

BaBar, Phys. Rev. D 85, 071103 (2012)
CLEO, Phys. Rev. D 65, 111102 (2002)
Belle, Phys. Rev. D 84, 071106(R), (2011)
LHCb, Phys. Rev. D 85,112004 (2012)
μZ → eZ

But also neutrinoless nuclear capture μZ → eZ...

Only one particle in final state: no accidental background issue. Background scales only linearly with beam rate → very big chance to explore extremely low BR...

Background coming from:
• μ decay in orbit
• radiative μ capture

Beam related background:
• π and e contaminations

Looking for single monoenergetic electron: \(E_e \sim E_\mu - B_\mu \) (recoil energy negligible)

improving detector resolutions

high purity environment:
• curved solenoid with gradient field
• pulsed beam with challenging extinction time
Current limit by SINDRUM II:
- BR(μTi→eTi)< 4.3×10^{-12}
- BR(μAu→eAu)< 7×10^{-13}

Beam intensity: 3×10^{7} μ/s (@PSI)

Energy of emitted electrons is measured with a cylindrical magnetic spectrometer: drift chamber and scintillators/Cerenkov hodoscope.

SINDRUM II parameters:
- beam intensity: 3×10^{7} μ/s
- μ momentum: 53 MeV/c
- magnetic field: 0.33T
- acceptance: 7%
- momentum res.: 2% FWHM
- S.E.S 3.3×10^{-13}

μ^Z→eZ status

μ^N→eN status
<table>
<thead>
<tr>
<th></th>
<th>Mu2e</th>
<th>COMET</th>
</tr>
</thead>
</table>
| **Proton Beam** | 8 GeV, 8kW
 bunch-bunch spacing 1.69 µsec
 rebunching
 Extinction: < 10\(^{-10}\) | 8 GeV, 50kW
 bunch-bunch spacing 1.18-1.76 µsec
 empty buckets
 Extinction: < 10\(^{-9}\) |
| **Muon Transport** | S-shape solenoid | C-shape solenoid |
| **Detector** | Straight Solenoid w/gradient field
 Tracker and Calorimeter | C-shape solenoid with gradient field
 Tracker & calorimeter |
| **Sensitivity** | SES: 2 \times 10^{-17}
 90% CL U.L.: 6 \times 10^{-17} | SES: 2.6 \times 10^{-17}
 90% CL U.L.: 6 \times 10^{-17} |
Aiming for a 10^{-18} search with an extreme high intensity ($10^{11} \div 10^{12} \mu/s$) beam with \(\mu \) storage ring.

Fixed-field alternating gradient synchrotron perform conversion from original short-pulse beam with high momentum spread (30%) into a long pulse beam with narrow momentum spread (3%).
Key elements to MEGUP

1. Increasing μ^+–stop on target

2. Reducing target thickness to minimize e^+ MS & brehmsstrahlung

3. Replacing the e^+ tracker reducing its radiation length and improving its granularity and resolutions

4. Improving the timing counter granularity for better timing and reconstruction

5. Improving the positron tracking-timing integration by measuring the e^+ trajectory up to the TC interface

6. Extending the γ–ray detector acceptance

7. Improving the γ-ray energy and position resolution for shallow events

8. Integrating splitter, trigger and DAQ maintaining a high bandwidth
CLFV Programs