An FPGA based Trigger for the search of the $\mu \rightarrow e\gamma$ decay in the MEG experiment

INFN and Pisa University Italy Paul Scherrer Institut PSI Villigen Switzerland

Luca Galli

PAUL SCHERRER INSTITUT

on behalf of MEG collaboration

Outlook

- The MEG experiment
- Event signature and background
- The trigger system
 - Electronics
 - Algorithm implementation and system performances

MEG experiment

Search for $\mu \rightarrow e\gamma$ with unprecedented sensitivity BR $\approx 10^{-13}$

- Standard Model including neutrino oscillations
 → BR ≈ 10⁻⁵⁰
- SU(5) and SO(10) SUSY-GUT theories predictions
 → BR ≈ 10⁻¹² ÷10⁻¹⁴

An observation of this decay will be a clear evidence of physics beyond the Standard Model

International collaboration \approx 60 physicists

Experiment mounted in 2007 at Paul Scherrer Institute CH

PSI provides the most intense low momentum muon beam in the world

 $R_{\mu} \approx 3 \times 10^7 \mu/s$

Event signature and background

$$E_{\gamma} = E_{e^+} = 52.8 \text{ MeV}$$

 $\Delta t_{e\gamma} = 0 \text{ ns}$
 $\theta_{e\gamma} = \pi \text{ rad}$

main - Accidental Bkg

$$B_{Acc} \propto R_{\mu} \delta x (\delta y)^2 \delta \theta_{e\gamma}^2 \delta t_{e\gamma}$$

$$x = \frac{2E_e}{m_\mu} \qquad y = \frac{2E_\gamma}{m_\mu}$$

Detector

Project resolutions

	FWHM		
ΔE_e	$0.7 \div 0.9\%$		
ΔE_{γ}	4%		
$\Delta \theta_{e\gamma}$	$17 \div 20.5 \text{ mrad}$		
$\Delta t_{e\gamma}$	$0.15 \ \mathrm{ns}$		

Largest homogeneous LXe detector ever 8001 read by \approx 850 PMTs

LXe → fast scintillation light O(40 ns) → 40000 phe/Mev

Magnetic Spectrometer

- Non-uniform magnetic field
- Drift chamber for tracking
- Plastic Timing Counters $\rightarrow E_{e}, T_{e}, \theta_{e}$

Trigger system requirements

- Fast computation → DRS chip digitizer (PSI) requires trigger within 450 ns
- Good background rejection with high efficiency on signal
- flexibility to any experimental requests

System based on logic computation on FPGAs

- Use of fast devices: LXe detector and TC
- Final latency of 400 ns
- A Background rejection at 10^7 level \rightarrow Lifetime \approx 90% with 50 Hz DAQ
- Efficiency on signal > 90%
- Up to 32 different trigger types avalilable

Trigger electronics

Three different custom VME boards developed by INFN Pisa group

• Typel board:

- Front End receivers for PMT and aux signals
- I00 MHz I0 bit waveform digitizer
- first level of data processing (e.g. online channel calibration and pedestal subtraction)

• Type2 boards:

- middle and final layer
- connected to 9 boards from previous layer, 48bit 100 MHz LVDS trasmission
- event reconstruction \rightarrow stop signal to DAQ
- Ancillary boards:
 - CLK and control signals fan-out to synchronize whole system

Selection variables

- Gamma energy deposit on LXe detector
- Time difference between photon and positron
- Collinearity of the event

Gamma energy

Coherent sum of LXe waveforms:

- single channel calibration for PMT gain and geometry

threshold on pulse height

Channel calibration: use of software programmable LUT

Charge estimator: parallel sum of 400 channels

Gamma energy (2)

Conditional probability on signal PDF

→ Efficiency > 99%

Relative time

Efficiency > 99%

Collinearity

Correlation of LXe PMT index and (BAR,Z) hit on TC

LUTs implementation based on MC simulation

Gamma direction: LXe PMT collecting higher light (stack of comparators)

Positron direction: → index of hit bar (discriminator + LUT for multi tracks) → inpinging point on bar by charge ratio (LUTs)

Efficiency = 66%, maximize lifetime*efficiency for 2008 RUN

	Trigger	types THE 2- MEG-Direction		
Physics data triggers				
Type	E _Y Thr (MeV)	$ \Delta T $ (ns)	Collinearity	
MEG	40	10	LUT	
Check Er	30	10	LUT	
Check Coll	40	10	NO	
Check ΔT	40	20	LUT	
Example of calibration triggers				
Туре	Selection criteria			
LXe alone	E _Y threshold as MEG			
TC alone	Single hit on TC bars			
DC alone	Track candidates on DCs			
Pedestal	Random triggers			

DAQ set-up

- Single mask and prescaling factor
- DAQ with different triggers mixed together
- ONLINE computation of total and lifetime
- The trigger system merged into MEG Midas DAQ system
 - exchange of control signals with MEG digitizers (DRS, PSI) through a dedicated bus
 - second MEG digitizing system for fast check of data, in particular for LXe energy

Conclusions

- A novel electronic trigger system developed for the MEG experiment
- Multi layer structure based on digital computation of detector signals
- Selection algorithms implemented into FPGAs → fast computation and flexibility
- High efficiency on signal with 10⁷ background rejection
- Trigger system inserted into experiment DAQ