# **Overview of the MEG Experiment** Search for the Lepton-Flavour Violating Decay

# $\mu^+ \rightarrow e^+ \gamma$

### at PSI

### Presented by: Peter-Raymond Kettle (MEG Collaboration)

# **Physics Motivation**

Minimal Standard Model (SM)-

Baryon Number, Lepton Flavour & Lepton Number - conserved ! neutrinos massless - no oscillations !

however

Extensions to SM -( with massive v's & hence v-oscillations) -

**Predict LFV rates** 

→ too small to be observed ~ BR O(10<sup>-50</sup>)

Hence: processes such as  $\mu \rightarrow e\gamma$ ,  $\mu \rightarrow e$ ,  $\mu \rightarrow eee$ ,  $K^{0}_{L} \rightarrow \mu e$ ,  $Z^{0} \rightarrow \mu e$  & *v*-oscillations &  $0\nu\beta\beta$ -decay are sensitive tools to probe physics beyond the Standard Model

#### **Physics Motivation (Theory & Experiment)**

| Extensions beyond SM - Predict LFV &     | BNV at a me                    | asurable           | level             |
|------------------------------------------|--------------------------------|--------------------|-------------------|
| e.g. see Barbieri & Hall, Hisano et al.) |                                |                    |                   |
|                                          | Process                        | Current            | SUSY              |
| Super Symmetry (SUSY-GUTs)               | $\mu^+ \rightarrow e^+ \gamma$ | 10 <sup>-11</sup>  | 10 <sup>-13</sup> |
| SU(5) 10-13< Br( μ→eγ) < 10-15           | $\mu^- N \rightarrow e^- N$    | ~10 <sup>-12</sup> | 10-15             |
| SO(10) 10-11< Br( μ→eγ) < 10-13          | $\tau \rightarrow \mu \gamma$  | <b>10</b> -6       | 10-9              |

**!!! Just below Present Experimental Bound <1.2.10<sup>-11</sup> !!!** 

Further Stimulus for the search for LFV in the charged Lepton Sector

Discovery of ν-oscillations (Super-K, SNO, KAMLAND) g-2 Results (BNL) Report of 0vββ-clecay ???(Heidelberg/Moscow) Report Proton Decay ??? (Kolar Goldfield)

Peter-Raymond Kettle

*PSI May 16th 2003* 

# **SUSY Predictions**

e.g. Prediction Br( $\mu \rightarrow e\gamma$ ) vs. parameter space in SUSY SU(5) see J. Hisano et al. Phys. Lett. B391 (1997) 341



Small  $tan(\beta)$  –Excluded LEP SUSY Search

## The $\mu \rightarrow e \gamma \quad v$ - Connection



# 2<sup>nd</sup> Generation LFV Searches

Experimental LFV-Searches have a Long History -

• goes back to 1947 E. P. Hincks & B. Pontecorvo, using cosmic rays ( $\mu \rightarrow e_{\gamma}$ ) • Improvement about 2-Orders of Magnitude per Decade

• muons seem to provide the most sensitive limits (copious source, small mass, long life)

Most Promising Candidates in the Charged Lepton Sector:  $\mu \rightarrow e\gamma \& \mu \rightarrow e$ 



# $\mu \rightarrow e\gamma$ Chronology

| Laboratory   | Collaboration                  | Year<br>Published | Upper Limit<br>d (90%c.l.)    |  |  |
|--------------|--------------------------------|-------------------|-------------------------------|--|--|
| Cosmic rays  | E. P. Hincks & B. Pontecorvo   | 1947              | 0 +0.06 -0.0                  |  |  |
| Columbia     | S. Lokanathan & J. Steinberger | 1955              | <b>2·10</b> <sup>-5</sup>     |  |  |
| Columbia     | D. Berley et al.               | 1959              | <b>2·10</b> <sup>-6</sup>     |  |  |
| CERN         | J. Ashkin et al.               | 1959              | $(1.2\pm1.5)\cdot10^{-6}$     |  |  |
| LRL Berkeley | S. Frankel et al.              | 1960              | <b>1.2·10</b> <sup>-6</sup>   |  |  |
| Columbia     | D. Bartlett et al.             | 1962              | 6·10 <sup>-8</sup>            |  |  |
| LRL Berkeley | S. Frankel et al.              | 1962              | <b>1.9·10</b> <sup>-7</sup>   |  |  |
| LRL Berkeley | S. Frankel et al.              | 1963              | 4.3·10 <sup>-8</sup>          |  |  |
| Chicago      | S. Parker et al.               | 1964              | 2.2·10 <sup>-8</sup>          |  |  |
| TRIUMF       | P. Depommier et al.            | 1977              | <b>3.6·10</b> <sup>-9</sup>   |  |  |
| SIN          | A. van der Schaaf et al.       | 1977              | 1.1·10 <sup>-9</sup>          |  |  |
| LAMPF        | J. D. Bowman et al.            | 1979              | <b>1.9·10</b> <sup>-10</sup>  |  |  |
| SIN          | A. van der Schaaf et al.       | 1980              | <b>1.0·10</b> <sup>-9</sup>   |  |  |
| LAMPF        | W. W. Kinnison et al.          | 1982              | <b>1.7·10</b> <sup>-10</sup>  |  |  |
| TRIUMF       | G. Azuelos et al.              | 1983              | <b>1.0·10</b> <sup>-9</sup>   |  |  |
| LAMPF        | R. D. Bolton et al.            | 1986              | <b>4.9·10</b> <sup>-11</sup>  |  |  |
| LAMPF        | R. D. Bolton et al.            | 1988              | <b>4.9·10</b> <sup>-11</sup>  |  |  |
| LAMPF        | M. L. Brooks et al.            | 1999              | <b>1.2·10<sup>-11</sup></b>   |  |  |
| PSI          | MEGCollaboration               | >2005 ?           | <b>1.0·10<sup>-13</sup> ?</b> |  |  |
|              | PSI                            |                   |                               |  |  |
|              |                                |                   |                               |  |  |

- End of 70's Meson Factories take over competition
- higher intensity beams
- Duty cycle



Peter-Raymond Kettle

**Proposal 1999** 

**Approval 1999** 

## **PSI & LFV- Searches**

#### PSI also has a tradition in LFV-searches:

**Present most Sensitive Measurements** 

| Reaction                                | 90% CL                       |  |  |  |
|-----------------------------------------|------------------------------|--|--|--|
| Br(μ <sup>-</sup> Au→e <sup>-</sup> Au) | New Prelim.                  |  |  |  |
| Br(μ⁻Ti→e⁻Ti)                           | 6.1·10 <sup>-13</sup>        |  |  |  |
| Br(μ⁺→e⁺e⁻e⁺)                           | 1·10 <sup>-12</sup>          |  |  |  |
| Br(μ <sup>-</sup> Pb→e <sup>-</sup> Pb) | <b>4.6·10</b> <sup>-11</sup> |  |  |  |
| Br(μ <sup>-</sup> S→e <sup>-</sup> S)   | <b>7·10</b> <sup>−11</sup>   |  |  |  |
| P <sub>MM</sub> (μ⁺e⁻→ μ⁻e⁺)            | 8.3·10 <sup>-11</sup>        |  |  |  |
| Br(μ⁻Ti→e⁺Ca)                           | 1.7·10 <sup>-12</sup>        |  |  |  |
| Br(μ <sup>_</sup> S→e⁺Si)               | 9·10 <sup>-10</sup>          |  |  |  |

Sindrum II-Collab. M M- Collab. SIN-measurements

- 600 MeV Ring Cyclotron
- 1.8-2mA Proton Current
- DC Beam –100% Duty Cycle
- • $\pi$ E5 Surface Muon Beam >10<sup>8</sup> $\mu$ +s<sup>-1</sup>



# MEG Experiment $\mu \rightarrow e\gamma$ at PSI



#### **Features**

Sensitivity down to ~ 5.10<sup>-14</sup>

Utilize most intense DC surface muon beam available

Liquid Xe photon detector

Gradient field superconducting positron spectrometer ( constant bending radius)

Positron tracker & timing counters

## **MEG** Collaboration

#### The MEG Experiment – Status December 2002

A. Baldini<sup>5\*</sup>, A. de Bari<sup>6</sup>, L. M. Barkov<sup>1</sup>, C. Bemporad<sup>5</sup>, P. Cattaneo<sup>6</sup>,
G. Cecchet<sup>6</sup>, F. Cei<sup>5</sup>, T. Doke<sup>9</sup>, J. Egger<sup>7</sup>, F. Gatti<sup>2</sup> M. Grassi<sup>5</sup>, A. A.
Grebenuk<sup>1</sup>, D. N. Grigoriev<sup>1</sup>, T. Haruyama<sup>3</sup>, M. Hildebrandt<sup>7</sup>, P.-R. Kettle<sup>7</sup>,
B. Khazin<sup>1</sup>, J. Kikuchi<sup>9</sup>, Y. Kuno<sup>4</sup>, A. Maki<sup>3</sup>, Y. Makida<sup>3</sup>, T. Mashimo<sup>8</sup>,
S. Mihara<sup>8</sup>, T. Mitsuhashi<sup>8</sup>, T. Mori<sup>8\*</sup>, D. Nicolò<sup>5</sup>, H. Nishiguchi<sup>8</sup>,
H. Okada<sup>9</sup>, W. Ootani<sup>8</sup>, K. Ozone<sup>8</sup>, R. Pazzi<sup>5</sup>, S. Ritt<sup>7</sup>, T. Saeki<sup>8</sup>,
R. Sawada<sup>8</sup>, F. Sergiampietri<sup>5</sup>, G. Signorelli<sup>5</sup>, V. P. Smakhtin<sup>1</sup>, S. Suzuki<sup>9</sup>,
K. Terasawa<sup>9</sup>, A. Yamamoto<sup>3</sup>, M. Yamashita<sup>9</sup>, S. Yamashita<sup>8</sup>, J. Yashima<sup>8</sup>,
K. Yoshimura<sup>8</sup>, T. Yoshimura<sup>9</sup>

(Collaboration for the  $\mu \to e\gamma$  Experiment at PSI)

<sup>1</sup>BINP, Novosibirsk, Russia
 <sup>2</sup>University of Genova and INFN, Genova, Italy
 <sup>3</sup>KEK, Tsukuba, Japan
 <sup>4</sup>Osaka University, Osaka, Japan
 <sup>5</sup>University of Pisa and INFN, Pisa, Italy
 <sup>6</sup>University of Pavia and INFN, Pavia, Italy
 <sup>7</sup>PSI, Villigen, Switzerland
 <sup>8</sup>University of Tokyo, Tokyo, Japan
 <sup>9</sup>Waseda University, Tokyo, Japan

December 2002

#### Now ~ 48 physicists from 10 institutes



# **Experimental Principle**



#### **Basic Beam & Detector Requirements**

- High stop-density (rate) μ<sup>+</sup>-beam with high duty factor (accidentals)
- High resolution  $\gamma$ -detection (angle + energy, accidentals)
- Solenoidal magnetic spectrometer (p-determination)
- Fast, high resolution tracking chambers for e<sup>+</sup> momentum determination (p- + angle)
- Timing counter for e<sup>+</sup> (angle + time)

# **Detector Performance**

• surface muon beam 28 MeV/c ~10<sup>8</sup> muons/sec

• thin stopping target 150µm CH<sub>2</sub>

• LXe Photon Calorimeter, (vol~800 litres, 3t) viewed by 800 PMs

 ultra thin 3 g/cm2 (Tγ=95%) super conducting solenoid (gradient field) 1.26T

• 17 azimuthally segmented, staggered mini-cell layers, of drift chambers

 double layer of scintillator hodoscope arrays, as e+-trigger
 timing counters



### **Detector Sensitivity**

**Single Events Sensitivity** 

Limited by the Accidental Background & hence Detector Performance

**Presently:** 

 $BR(\mu \rightarrow e\gamma) = (R_{\mu} \bullet T \bullet \Omega/4\pi \bullet \varepsilon_{e} \bullet \varepsilon_{\gamma} \bullet \varepsilon_{sel})^{-1} \approx 4 \times 10^{-14}$ 

Prompt Physics Background (Radiative)  $BR_{pr} \cong < 3.10^{-15}$ 

 $\begin{array}{ll} \mbox{Accidental} & \mbox{BR}_{acc} \propto \mbox{R}_{\mu} \bullet \Delta \mbox{E}_{e} \bullet \Delta \mbox{t}_{e\gamma} \bullet (\Delta \mbox{E}_{\gamma})^2 \bullet (\Delta \mbox{\theta}_{e\gamma})^2 \rightarrow \mbox{3} \cdot \mbox{10}^{-14} \\ \mbox{Background} \end{array}$ 

Upper Limit at 90% C.L. for BR( $\mu \rightarrow e\gamma$ )  $\approx 1 \cdot 10^{-13}$ 

# **Beam Transport System**



Peter-Raymond Kettle

PSI May 16th 2003

# **Photon Detection**



#### **Photon Calorimeter – Small Prototypes**



# **Photon Calorimeter – Large Prototype**



- test long-term cryogenic operation
- measure LXe properties
- check reconstruction methods
- Measure  $\Delta E$ ,  $\Delta I$ ,  $\Delta t$ How
- Cosmics,  $\alpha$  Sources • 60 MeV e<sup>-</sup> KSR Storage Ring • 40 MeV  $\gamma$ 's TERAS SR (Compton backscatter) • 55 MeV  $\gamma$ 's  $\pi$ -p $\rightarrow \pi^0$ n PSI









Peter-Raymond Kettle

PSI May 16th 2003

## **Photon Detector Performance**

Calorimeter Performance Strongly dependent on Optical Properties of LXe e.g. Absorption Length  $\lambda_{abs}$ > 1m

to reach  $\Delta E/E \sim \text{few \%}$  ( $\lambda_{abs} = \infty \text{ gives } \Delta E/E \sim 2.5\% \text{ FWHM}$ )  $\Rightarrow$ Initial results with Large Prototype: Dramatic loss of light !!! (90%)  $\Rightarrow \lambda abs \sim 10 \text{cm } \text{!!!}$ 

#### Problems with Contaminants mainly H<sub>2</sub>O

# Improvement with purification (Oxysorb/getter/re-circulation)



Light yield vs Purification time



New continuous purification system being implemented
 Presently λabs > 1m 90% CL

## **Positron Detection**



- Thin superconducting magnet with gradient field
- Drift chambers for positron tracking
- Scintillation counter arrays for positron timing & triggering

# **Positron Spectrometer COBRA**



# **COBRA** Magnet









- High-strength aluminum stabilized thin superconducting coil ~ 0.2 X<sub>0</sub>
- Five coils with three different diameters to realize gradient field
- $B_c = 1.26T, B_{z=1.25m} = 0.49T,$
- operating current I<sub>opt</sub>= 359A
- Compensation coils to suppress the residual field around the LXe detector to < 50 Gauss (PMTs)

### **Positron Tracking – Drift Chambers**



- 17 planar chambers
- aligned radially at ~ 10° intervals
- Staggered cells measure both position  $r \propto (t_1-t_2)$

 $\sigma_r \sim 200 \ \mu m$  and time t  $\propto (t_1 + t_2)/2 \ \sigma_t \sim 5 \ ns$ 

- He C<sub>2</sub>H<sub>6</sub> gas to reduce multiple scattering
- Vernier pattern to determine z-coordinate via Charge Division σ<sub>z</sub>~ 300 μm



# **Prototype DCs**

- Two prototypes are under test at PSI.
  - "Double cathode" chamber
    - Two separated double-strip cathodes for each chamber layer
      - → homogeneous position sensitivity
    - Test in 1 Tesla magnetic field
  - "Charge division" chamber
    - Charge division test
    - 1m-long W(330W/m) or Steel(1200W/m)
- Supporting system is also under development.







| <b>ΤΟΚΥΟ Test DC Resolution</b> (σ) |                   |
|-------------------------------------|-------------------|
| Drift time measurement              | <b>100-150</b> μm |
| Vernier cathode measurement         | <b>425</b> µm     |
| Charge division measurement         | 2cm               |
| Drift velocity and drift time       | 4-12ns            |

# **Positron Timing Counters**





 Double layer of scintillator bars placed at right angles to each other, both up- & down-stream of the DCs Outer: timing measurement Inner: additional trigger information
 Goal σ<sub>time</sub>~ 40psec (100 ps FWHM)



# Timing Counter R&D



# Trigger

10<sup>8</sup> s<sup>-1</sup>

2×10<sup>3</sup> s<sup>-1</sup>

200 s<sup>-1</sup>

20 s<sup>-1</sup>

10 s<sup>-1</sup>

- μ<sup>+</sup>-stopping rate
- Fast LXe energy sum ΣE<sub>y</sub> > 45MeV
- **\*** time correlation  $\gamma e^+$
- γ interaction point (PM with Q<sub>max</sub> on front face only)
   extrapolate to target centre & correlate with
   e<sup>+</sup> impact point on timing counter
- **\*** angular corrlation  $\gamma e^+$
- cut on R<sub>max</sub> of drift chambers ?

#### **Digital Trigger:**

- Waveform digitizing for ALL channels
- 2GHz Waveform digitization
- 100 MHz FADCs + FPGAs
- baseline subtraction
- QT-Alogorithm (Q<sub>max</sub> + t)
- latency 350 ns





Photon direction selection 7.5° in φ for a μ<sup>+</sup>→θ<sup>+</sup>γ event In LXe Calorimeter to Target (PMT with Q<sub>MAX</sub> front face LXe) gives a spread over (5 timing counters) on the e<sup>+</sup>- timing counters side (one coloured band)



Peter-Raymond Kettle

PSI May 16th 2003

# Conclusions



# **Experiment Time Scale**

| _    |       |      | now   |      |          |    |             |      |      |      |      |
|------|-------|------|-------|------|----------|----|-------------|------|------|------|------|
| Pla  | nning |      | R & D |      | Assembly |    | Data Taking |      |      |      |      |
| 1997 | 1998  | 1999 | 2000  | 2001 | 2002     | 20 | 03          | 2004 | 2005 | 2006 | 2007 |

- All Detector Systems under development
- R&D phase still in progress
- Next significant Milestone Large Prototype test NOW
- Beam studies PSI πE5 Finishing now

**Further interest** 

http://meg.icepp.s.u-tokyo.ac.jp http://meg.pi.infn.it http://meg.psi.ch