Drift Chamber Analysis - RUN2007

Drift Chamber Group

CONTENTS

- General Remarks
- Hit Reconstruction
- Calibration
 - z / time / x-t
- Tracking
 - Track finding / Track fitting
- Michel Spectrum

DC Software Development

Multi-stage analysis with two largely independent codes at each stage

- Roughly equivalent output of each stage not quite plug compatible
- Maintaining two code developments has proved valuable
 - •Weaknesses in one or the other strategy have been found and improved
 - Very different initial strategies have come closer together
- Calibration of DRS (hardware)
 - Time and charge calibration common to two analyses
 - Shortcomings have been found in current calibration improved calibration technique (special purpose data) being developed now for next run

Calibrations in software

- Z determination slight differences in principle, poor correlation in some measured parameters (relative gains at two ends of wires), calibration and analysis are strongly correlated.
- Wire t0 implemented differently, not yet using timing counter to set event t0
- Absolute charge not implemented in either

- Hit finding differences in details, most not tested for relative performance
 - · Differences in how baseline (pedestal) is determined
 - Differences in hit time and charge determination algorithm
- Cluster finding cluster is set of hits in one chamber from one track
 - Similar algorithms, some differences in definition of cluster
 - · Handling of pad cycle determination in special cases different
- Track finding very different initial algorithms have converged, but still significant differences
 - Minimal set of starting clusters (track seed) different
 - Technique for extending track different
 - Handling of hits with ambiguous Z coordinates different
- Track fitting currently identical Kalman filter code accepts either trackfinder as input
- Calibration data base some shared, some independent
- Performance measures
 - Reconstruction efficiency now at the level of scanning to find ways to improve efficiency
 - ·Resolutions: low level analysis and calibrations not full optimized for resolution, only preliminary results
 - Rate dependence of performance not yet studied

Hit Reconstruction

Low frequency noise; DRS timing calibration; etc

Hit Reconstruction II

- Baseline : Maximum of the amplitude distribution of points out of the peak region
- T0 : Leading edge fit including different numbers of points on the leading edge
- Charge : Integration with a fixed integration length (50-75nsec)

A Sinusoidal Fitting Function

A cathode (hood) asymmetry was fit for each wire:

 $Asym(z) = A^{*}(1 + slope^{*}z)^{*} sin[2pi / wavelength^{*}(z - phase)] + offset$

- Cathode & Hood Wavelength:mean = 5.016 cm
 - **∢** σ = 0.059cm

Hood - Cathode difference:
mean difference = 0.005 cm
σ = 0.029cm

Anode Z resolution

- All wires < 1.06cm
- Only 1% of the hits are in the wrong period.
- On the anode we achieve the designed resolution

Z Position Resolution

- σ = 600~800 µm for "good" chambers
- The intrinsic resolution indicated by the thickness of the *vernier-circle*.
- The residual distribution is not biased by the reconstruction algorithm.

Z resolution as a function of cell-numbers

R Position Resolution

Main Problem

- Fake hits on DRS2 chip ==> gone with DRS4
- DRS calibration improvement
- low/high frequency noises

Track Reconstruction

- Two independent tracking algorithms
- Tracking software is still being developed. Many things still have to be done ASAP.
- It works fine for good events in RUN2007 data.

DC event display

5x10⁶ /sec muon intensity

3x10⁷ /sec muon intensity

Track Finding (3x10⁷ /sec muon intensity, typical event)

Track Finding (3x10⁷ /sec muon intensity, typical event)

Radiative Event

Tracking Efficiency

	track finding eff.	good tracking eff.
RUN2007 Michel	43%	33%
MC (52.8MeV)	99%	97.5%

- At the ultra-low rate but the rate dependence seems small.
- Needs optimization for tracking with the dead/bad chambers.
- Efficiencies for Michel spectrum tracks should be worse than monochromatic 52.8 MeV tracks.
- A crude, preliminary evaluation of the effects of the dead/bad chambers gives a "good tracking" efficiency of ~79%.

Reconstructed Momentum Spectrum

Momentum Resolution Estimation

• The measured spectrum is fitted to the MC spectrum smeared by a Gaussian resolution function with 3 free parameters; " E_{edge} ", " σ_{p} " and "Normalization"

Momentum Resolution

- only chi2 cut, no other event selection
- angular dependence should be studied

Momentum spectrum (Radiative Trig. = DC*TC)

A Comparison to MC Expectation

 $\sim \sim$

A Comparison to MC Expectation

A crude evaluation of effects of dead/bad channels (very preliminary)

Reconstructed Vertex

 Projected onto the target plane: only tracks perpendicular to the plane within ±10deg. and high momentum (>45MeV/c) are selected

Reconstructed Vertex (MC comparison)

- data : projected onto target plane, perpendicular events (within ±15deg.) and high momentum (>50MeV/c) are selected
- MC : projected onto target plane, perpendicular events (within ±15deg.) (but monochromatic e⁺(=52.8MeV/c) is generated)

Slice-view of reconstructed vertex (MC)

• An angular resolution guestimated from fitting errors is ~7 mrad.