Summary of the LXe calorimeter analyses

presented by G. Signorelli INFN Sezione di Pisa

MEG Review meeting 18 Feb. 2008

Outline

- The LXe analysis deals with the evaluation of
 - calorimeter performance
 - calorimeter stability
- For sake of simplicity I will divide the topics in two classes
 - Short term properties
 - evaluation of calorimeter resolutions/properties that deal with a limited lapse of time
 - evaluated on a (time and statistics) limited number of runs

- Long term properties
 - follow the evolution of the performance of the detector for the full duration of the physics run
 - makes use of day-to-day calibration and monitoring
- First I show some common calibrations for both
 - Waveforms
 - QEs
 - Gains

XEC Analysis

- Aims at reconstructing energy, position and timing of the photon;
- Two digitizers available
 - TRG (100 MHz, 10 ns/bin): online charge & time, offline charge
 - DRS (1.6 GHz, 62.5 ps/bin) : charge & timing

QE computation

- Comparison between data and Monte Carlo
 - QE in liquid xenon
 - QE in gas xenon

- Improves the uniformity of the calorimeter response
 - ever-improving procedure
 - tuning of the MC by comparing w/data
 - wire positions
 - Xe optical properties

Gain determination

- Unforeseen gain variation requires some "new" treatment this year
- Long term drift (\rightarrow see Mihara-san presentation)
 - taken under control w/daily calibrations

- Beam ON/beam OFF variation ⁻
 - It was discovered because of a shift in the cosmic ray peak in the calorimeter
 - rate dependent

Gain shift correction

- the correction has been measured for each PMT taking special runs
 - fitted with 3-ple exponential
 - $1 + a_1(1 e^{-t/T_1}) + a_2(1 e^{-t/T_2}) + a_3(1 e^{-t/T_3})$
 - beam $ON \rightarrow OFF \neq$ beam $OFF \rightarrow ON$
 - different PMT by PMT
- rate dependence of the shift
 - necessary to take into account the difference between μ -runs and π° runs

BB close time

LED calibration

corrected through database

0%

Short-term properties

• Snapshot of our detector at a fixed moment in time

Resolutions				
 Position 				γ from $\pi^{\rm o}$
• Time				
 intrinsic time resolution (neglect conversion) 	on point, p	ositron si	de)	γ from $\pi^{\rm o}$
 absolute time resolution 	RD	Dalitz	CW B	γ from π^{o}
• Energy				
 @ different energies 			CW Li & B	γ from $\pi^{\rm o}$

- Part of the information needed a dedicated π° run
- Part of the information was checked on an almost-daily basis
 - Provides the link between the various snapshots
 - see second part: long term stability

The π^{o} runs

- Summer run:
 - 55 MeV photon all over the calorimeter surface
 - uniformity of the calorimeter to extract the *pdf*
 - energy resolution
 - time resolution
 - lead collimators with slits
 - position resolution
 - unknown gain correction due to the rate
- Winter run:
 - one week of data taking
 - estimate the rate-dependence of the gain shift
 - 55 MeV photon in significant places
- NOTE: from a single rate point of view the π^o runs are very different from the μ-runs because of the much larger pile-up

Position resolution

- A lead collimator is placed in the central calorimeter region
- The "shadow" of the collimator is reconstructed. The resolution is extracted from the deconvolution of the edge of the collimator

- Present result:
 - Edge: resolution ~ 0.51, 0.52 cm
 - Slit: resolution ~ 0.65 0.70 cm
- Effect of the finite size of the target
 - under evaluation
- Analysis with refined QEs in progress

Intrinsic time resolution

$$T_{0} = T_{i}^{tw} - \frac{\rho_{\text{int}}}{c} - \frac{|\vec{R}_{\text{int}} - \vec{P}_{i}|n_{\text{Xe}}}{c} - T_{\text{PMT}} - T_{\text{dly}}$$

- Divide the PMTs in two groups
 - Odd / Even
 - Top / Bottom
- $t_a = \Sigma t_{2k} Q_{2k} / \Sigma Q t_b = \Sigma t_{2k+1} Q_{2k+1} / \Sigma Q$
 - $\sigma_t = VAR(1/2(t_a t_b))$
- The two analyses agree well
 - $\sigma_t(intrinsic) \sim 50 60 \text{ ps } @ 52.8 \text{ MeV}$
 - still some dependence on cuts, geometry...

Absolute time resolution

$$T_{\rm Abs} = \frac{1}{2} \left(T_L + T_R \right) - T_{\rm ref}$$

- Use a lead-plastic scintillator converter placed in front of the NaI detector as a reference counter
- The γ conversion point in LXe contributes to this resolution
- This resolution includes contribution from
 - spread of π^{o} dacay point (~60ps)
 - resolution of reference counter (~93ps)
- $\sigma_t(Abs) \sim 150 \ \Theta \ (93 \oplus 60) \sim 100 \ ps$
- systematics under study

Energy resolution

- 180° coincidence selects 55 MeV and 83 MeV in LXe and Nal
- Resolution evaluated on all calorimeter surface

- Worse than expected
- Effect of the high rate during π^{o} run
 - necessary to make a mini-CEX at the end of the year
 - gain correction are being improved following the new information available

σ_E from CW runs

- Three times per week we take (p,Li) and (p,B) reactions
 - 17.6 MeV line
 - 4.4 MeV & 11.6 MeV coincidence with TC
- Extract the resolutions

$CW - \pi^{o}$ mismatch

- There is still some inconsistency between the CW and the π° calibration
 - energy scale
 - resolutions
- During the π^{o} run the background in the calorimeter is different from the normal muon run
 - different working point of the PMTs (gain shift)
 - much higher pile-up
- To be understood as it represents a huge systematics for our analysis

Long-term analysis

- Stability
- Performance

As a function of the time

• ...

Variation of Xe properties

- Xe was getting cleaner and cleaner with time (\rightarrow see Mihara-san presentation).
 - change no in absorption but in emission yield
- have time-dependent resolutions, e.g.:
 - L.Y. $\Rightarrow \sigma_{E}(t)$
 - $\tau \Rightarrow \sigma_t (t)$
 - Need to implement this in the
 - signal "box"
 - likelihood analysis
 - systematic uncertainty on the limit
- We use the CW data to "calibrate" our knowledge of the instability
 - Li peak (17.6 MeV)
 - correct the time-dependent energy scale & follow the resolution
 - B coincidence between LXe and TC (4.4 MeV & 11.6 MeV)
 - check the energy correction and the time drift (\rightarrow see *G*. *Cavoto's presentation*)

In-run changes

- How the performance changes during the run
- The estimated improvement in energy resolution due to the increasing number of photoelectrons is ~18%
- From the CW peaks as a function of the time we find
 - (11±6)% on Li
 - (13±8)% on B
- Refinements in progress
 - Signal & background *pdf* evaluation

FWHM ~ 7%

Energy scale correction

- The position of the 17.6 MeV peak is used to correct for the energy scale
 - smooth correction as a function of the time of the event
 - it is necessary to "put alls runs together"
 - Correction checked with Boron lines
 - some small discrepancy between DRS and TRG charge t.b.i.
 - influence on the *pdf* determination systematics under way

RD photon spectrum

- Now that we know how to sum spectra from different runs we can try to evaluate global properties
- Events in the radiative decay set ($\pm 6\sigma$ from Δt peak \rightarrow see Ootani-san presentation)
- The shape of the spectrum is well reproduced
- The Monte Carlo simulation is scaled to be superimposed to the measured spectrum
 - the estimate of the absolute rate is under way
 - efficiency of the selection cuts
 - efficiencies on the "positron-side"

LXe single spectrum

- From the LXe single event trigger we do not observe any unforeseen background in the μ -beam.
- Both the spectrum shape and the absolute rate are correctly reproduced
 - 3 x 10⁷ μ ⁺/s stopping rate
- We can use MC evaluation of efficiency for the detection of a photon from the calorimeter:
 - ϵ (MC, E γ > 27 MeV) = 0.51 compatible w/MC+reco efficiency on signal γ .
 - (Read: probability that a γ with E>27 MeV is detected with E>27 MeV)

Xe detection efficiency

- Another method to estimate the LXe calorimeter detection efficiency is using events by Nal self trigger in CEX Dec/2008
- select events by Nal energy around 83MeV
 - if a photon in this energy range reaches NaI \Rightarrow the corresponding 55 MeV γ ray is in the LXe calorimeter acceptance
- XEC efficiency
 - Count the number of photons detected by the calorimeter above a certain threshold
 - to avoid neutron background for eventiestimation of LXe lower energy a correction is applied 140
- In progress

Conclusion

- The LXe calorimeter analysis is ongoing at a great speed
 - the calorimeter shows good performance, though there are variations in light yield;
 - We had our "weapons" and "tools" to follow carefully the situation
- Our measured resolutions @52.8 MeV up to-day
 - **- σ**_{pos} ~ 0.6 cm
 - $\sigma_{\text{time}} \sim 55 \text{ ps}$ (intrinsic) ~ 100 ps (including photon conversion in XEC)
 - FWHM_(E) ~ 6.4% @ 55 MeV
- Algorithm tuning and computation of calibration constants are still under way
 - PMT charge inter-calibration, to drift, ...
 - FWHM of π° is an upper limit \rightarrow pile-up $\neq \mu$ -runs
- A careful treatment of the systematics is mandatory and under way to evaluate the effect of the summing runs with
 - different resolutions
 - different energy scale...
- See the combined analysis for the "physics" performance

Back-up slides

- Time/Rate dependence of the gain
- Position correction instead of QE application
- Waveform change with purity
- π^{o} pile-up
- Li peak summed on all runs
- Pile-up rejection algorithms
- XEC uniformity after QE correction