MEG Calibrations

Angela Papa MEG Review meeting February 2010

Outlook

- Introduction
- Cockcroft-Walton accelerator
- Am-Be source
- CEX reaction
- LED
- Alpha-sources
- Neutron generator
- Positrons

Introduction

- Calibrations during 2009
 - methods and upgrades
- Use of the shutdown to further improve the calibration methods
- Opportunity for reaching a performance plateau

LXe calorimeter and TC

Cockcroft-Walton accelerator

- Gamma line at different energies (17.6 MeV, 12 MeV, 4.4 MeV)
 - LXe light-yield monitoring
 - LXe calorimeter energy resolution
 - LXe calorimeter uniformity
- Time coincident gammas
 - LXe calorimeter-TC timing

LXe LY monitoring 2009

• LY stable at the 1% level during data taking 2009

Xe purification in liquid phase

6

Alpha and gamma separation

- Charge to Amplitude ratio (Q/A)
 - Q/A of gamma increased by purification
 - Clear alpha and gamma separation based on pulse-shape

LXe-TC timing

• Boron data: coincident gammas

2010 improvements: CW beam-line set-up

- New Turbo pumping station (primary + turbo pumps)
- New vacuum pressure gauge
- New UPS system (PC for the CW)

Am-Be source (4.4 MeV from C^{*} de-excitation)

- Backup method during C-W maintenance, dismounted CW beam-line, etc.
- Neutron Activity ~20 KBq (PSI source)
- Calibration time: 20 min

40000 40000

No background subtraction

2010 improvements: MEG Am-Be source

- New source: Neutron activity ~50 KBq (2.5 x PSI one)
- Calibration time: 10 min
- Remote control to reduce neutron exposure and loss of time
 - Compressed air circuit
 - Safe source repository
 - Position sensors
 - Labview interface

Compressed air circuit

- Repository: polietylene (50x50x50 cm³) surrounded by lead (5 cm thickness)
- Position sensors: microswitches mounted on "ad-hoc" stoppers
- System already tested
- Determination of the source magnetic properties
- Labview control ready
- To be completed:
 - microswitches and electrical valves

Am-Be set-up

CEX runs $\pi^{-}(p,n)\pi^{0}$

- Concident gammas at 54.9 MeV and 82.9 MeV ($\pi^0
 ightarrow \gamma\gamma$)
 - LXe calorimeter energy, timing and position resolution at an energy close to the MEG signal
 - LXe calorimeter energy linearity
 - LXe calorimeter uniformity
 - LXe calorimeter efficiency
- Dalitz events for timing $(\pi^0 \rightarrow \gamma e^+ e^-)$

LXe energy resolution

• $\sigma/E @ 52.8 \text{ MeV} \sim 1.95 \%$

LED runs

- Gain determination and gain time-variation
- Relative PMT gain variation with/without beam (muons/pions)

PMT gain monitoring

- Beam Off (alpha-CW-AmBe calibrations)
- Similar behavior with Beam On (MEG runs)

Relative PMT gain variation with/without beam

• Same behavior is observed for π^0 runs (3%) and for MEG runs (1.9%)

Cyclotron 2010 plans for Ultra Cold Neutron spill

- Proton current for MEG disappears for 8 seconds every 900 seconds
 - abrupt transition for LXe calorimeter PMTs

Can the effect be corrected by the injection of pulsed-light into the calorimeter?

Alpha-runs

- Alpha events: known position and energy
- LXe optical properties
 - λ_{att} , λ_{abs}
- QE determination
- LXe light monitoring

λ_{att} measurement

- Data sample
 - LXe data, id = 57308, 2009
 - GXe data, id = 42397, end of 2008

λ_{abs} limit

• MC inputs:

• $\lambda_{\text{Ray}} = 70 \text{ cm}, \lambda_{\text{Abs}} = 500 \text{ cm}, \text{ NO ref. on walls}$

QE determination

• Measurement of QE in liquid xenon for TRG and DRS data

QE benefit...

• Sample: Lithium runs ($E_{\Upsilon} = 17.6 \text{ MeV}$)

Extrapolation to 52.8 MeV $\sigma/E = 2.2\%$

Extrapolation to 52.8 MeV $\sigma/E~$ = 1.8%

2010 improvements: Neutron generator

- 9 MeV gamma line from thermalized neutron capture on Ni
- Monitoring of the LXe calorimeter during normal data taking (muon-beam)

Summary of the neutron generator working conditions for MEG

neutron generator type	DD reaction	
neutron emission energy	2.5 MeV	
neutrons/pulse	< 4 10 ⁴	
pulses/second	< 25	
pulse duration	10 us	
neutrons/second	< 10 ⁶	

Expected delivery time: march 15th

Calibration performances

- Beam off: no important background
 - alpha (rejection online by pulse shape)
- Beam on: background sources
 - alpha (rejection online by pulse shape)
 - electromagnetic background from the muon beam

SOURCE	ev/pulse	ev/sec
Neutron Generator	8	175
Alpha	0.5	5 10 ³
Gamma from muon beam	4	4 10 ⁴

(*) New studies underway to optimize the moderator + Nickel system

Spectrometer

2010 improvements: methods for DC study

- Michel positrons are the natural candidates to study the spectrometer resolutions
 - continuous energy spectrum
- Dedicated alternative methods:
 - Cosmic rays (done, as discussed in the DC's talk)
 - no beam, no magnetic field (Cobra)
 - straight tracks
 - once in a while, since it needs an "ad-hoc" set-up
 - Positron beam and Mott scattering on carbon target
 - possible between MEG runs
 - curved trajectories
 - A careful study of the positron beam is nedeed

after RUN 65495

CR set-up

Positrons

- A spectrometer calibration based on an intense positron beam
 - monoenergetic
 - energy-tunable (even over 50 MeV)
- Physics process
 - Coherent elastic scattering (Mott scattering) on light nuclei
- Measurement of:
 - momentum resolution
 - angular resolution (double turn)
 - DC efficiency as a function of momentum
 - DC efficiency as a function of angle

with trajectories similar to the ones of the signal

Number of events (MEG fiducial angular acceptance 9 = 70°-110°)
 @ 2 10⁷ e⁺/s, CH₂ target thickness 2.5 mm = ~200 ev/s

Example of one event

Hardware status

- CH₂ target is ready; thickness 2.5 mm
- Pneumatic actuator: all small steel parts replaced (home-made: shaft, or ordered: ceramic bearings)
- To be completed
 - compressed helium circuit and labview program (all parts already available (tubes, valves, connectors)

MC status

- * Added event type #70 (Mott scattering)
- # User's option (gem.cards)
 - * spot, momentum bite and divergence of incident positron beam;
 - * angular and momentum distribution of outgoing positrons;
 - * radiative corrections;
 - * target type (C, CH₂);
 - * possible slant angle of target;
 - tracking of outgoing positrons in target and spectrometer;
- Added target support and actuator

Conclusion

- All calibration methods worked rather well
- Improvements foreseen for 2010 run

Back-up

Relevant expressions for electron-nucleus elastic scattering

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2 Z^2}{Q^4} (1 - \frac{Q^2}{4p_0^2}) |F(Q^2)|^2 \qquad Q^2 = 4pp_0 \sin^2 \theta/2$$
Mott cross-section
$$p = \frac{p_0}{1 + \frac{p_0}{M}(1 - \cos \theta)}$$

$$F(Q^2) \approx 1 - \frac{Q^2 \langle R^2 \rangle}{6} + \cdots$$
approx. form factor
$$dQ^2 = p_0^2 \frac{d\Omega}{\pi}$$

$$< R^2 >^{1/2} = 0.94 \text{ A}^{1/3} \text{ fermi}$$

$$\hbar c = 0.1973 \text{ GeV fermi} \quad (\hbar c)^2 = 0.3894 \text{ GeV mbarn}$$

$$F(Q^2) \quad \text{nuclear form factor} \quad p_0 \quad \text{positron initial momentum}$$

$$\langle R \rangle^{1/2} \quad \text{nuclear root-mean-square radius}$$

$$M \quad \text{nucleon or nuclear mass}$$

INELASTIC FORM FACTOR FOR ¹²C 4.4 MeV line

INELASTIC FORM FACTOR FOR ¹²C 4.44 MeV line experimental data and theoretical evaluation

$$|F_{in}(Q^2)|^2 = [1/Z^2(2J_i+1)] |\sum_{M_i} \sum_{M_f} \langle J_f M_f | \sum exp(i\vec{Q} \cdot \vec{r}) | J_i M_i \rangle |^2$$

