Performance of the Liquid Xenon Scintillation Detector for the MEG Experiment

W. Ootani
ICEPP, University of Tokyo
For the MEG Collaboration
2006 IEEE Nuclear Science Symposium, San Diego, California

Contents

- What is MEG?
- LXe Scintillation Detector
 - 100L Prototype
 - New Developments for LXe Scintillation Detector
- CEX Beam Test
 - Energy Measurement
 - Time Measurement
- Summary

What Is MEG?

- MEG is an experiment to seek evidence for lepton flavor violating muon decay, µ→eγ.
- Since µ→eγ is forbidden in the Standard Model (SM), it can be a clear evidence for new physics beyond the SM such as SUSY-GUTs.
- Expected sensitivity ~ BR~10⁻¹³-10⁻¹⁴ improving the present limit by two-three orders of magnitude.
- Essence of MEG
 - World's most intense DC muon beam up to 2x10⁸ μ⁺/sec at Paul Scherrer Institute
 - MEG detector
 - Liquid Xe photon detector
 - COBRA positron spectrometer

MEG Detector in a Nutshell

- Photon detection: LXe scintillation detector→this work
- Positron detection: COBRA positron spectrometer
 - Superconducting magnet with gradient field
 - Low-material drift chamber system to measure positron momentum
 - Fast timing counters to measure positron timing

Liquid Xenon Photon Detector

- Measure energy, position and time of 52.8MeV-photon from μ→eγ
- All sides of C-shape 800L LXe are surrounded by 848 photomulipliers(PMTs).
- All PMTs read out by waveform digitizer→pileup rejection, particle ID
- How to measure high energy gamma-ray?
 - Energy: collect scintillation light as much as possible
 - Position: PMT output distribution
 - Time: average photon arrival time

Liquid Xenon Photon Detector, cont'd

- Why LXe?
 - High light yield (75% of Nal(TI))
 - Short radiation length (X₀=2.77cm)
 - Fast response
 - Homogeneous
 - Can be large and non-segmented
 - Purification even after the construction
 - No self-absorption of scintillation light

Excitation $Xe + Xe^* \rightarrow Xe_2^*,$ $\rightarrow 2Xe + h\nu$ Image: Description of the system of the sy

100L Prototype

- 100L LXe (active volume of 69L). World's biggest LXe scintillation detector already.
- Thin entrance window (0.24X₀)
- 238 PMTs are immersed in liquid.
- Large enough to contain 50MeV-γ event (17X₀), but with smaller acceptance.
- Pulse tube refrigerator with cooling power of 190W at 165K
- Demonstrate performance in energy-, position- and timing-measurements of the proposed full-scale detector.

PMT

- Developed in collaboration with Hamamatsu
- Operational in LXe (T=165K, pressure<3atm)
- Synthetic quartz window ($\lambda x_e = 175$ nm)
- Photocathode: K-Cs-Sb
 - QE=15% at 165K
 - Al strips to supply electrons at low temperature
- Metal channel dynode (tube length = 33mm)
- Low anode current to minimize heat dissipation in LXe.
- Zenner diode in breeder circuit for high rate environment

Size	57mm ϕ
Active area size	$45\mathrm{mm}~\phi$
PMT length	32mm
Photocathode material	K-Cs-Sb
Dynode type	Metal channel
Number of dynode	12
Typical HV	900V
Typical gain	1×10^{6}
Typical Q.E.	15%
Rise time	2nsec
Transit time	12.5nsec Typ.
TTS	0.75nsec Tvp.

Alpha Spot Source on Wire

- Alpha spot sources on wire for calibration and stability monitor.
- ²¹⁰Po (30-100Bq) electrodeposited on a gold-plated tungsten wire (50μmφ)
- Each PMT can see the light from alpha sources at different distances.
- ²⁴¹Am will be used for the full-scale detector.

Beam Test with CEX Process

- Two photons from π^0 produced in charge exchange (CEX) process, $\pi^- + p \rightarrow \pi^0 + n$.
 - Almost monochromatic 55MeV and 83MeV photons by selecting two photons with an opening angle $\theta{\sim}180^\circ$
 - Energy spread: 0.5%(2.3%) requiring θ>170°(175°) at 55MeV
- 129MeV photon from radiative capture process, π⁻+p→γ +n.
- Monochromatic photon (55, 83, and 129MeV) available.
- Improvements compared with the previous work
 - Front half of the PMTs were replaced with new PMTs with higher QE by a factor of three.
 - Energy and timing resolutions were measured with better photoelectron statistics.
 - Absolute timing resolution was measured for the first time.

CEX Beam test setup at \piE5 beam channel at PSI

LH₂ target

LXe 100L-prototype

π⁻beam

LYSO + NaI

Energy Measurement

- 55MeV (83MeV) event in LXe by selecting 83MeV (55MeV) event in Nal
- |x|, |y| < 2cm
- 83MeV event in LXe
 - $45 MeV < E_{Nal} + E_{LYSO} < 70 MeV$
- 55MeV event in LXe
 - $70 \text{MeV} < E_{\text{Nal}} + E_{\text{LYSO}} < 105 \text{MeV}$
- Cut and correction with depth parameter

Energy Measurement, Result

- Energy resolution obtained in CEX test at detector center
 - 4.8%(FWHM)
 - 1.23%(σ on the right side)

Time Measurement

- Timing of the event was measured with a time reference counter (LYSO).
- Timing at LXe calorimeter is calculated by averaging photon arrival time over the PMTs with a weight of number of photoelectrons.
- After correction of time-walk and reconstructed position, we obtained at 55MeV
 - σ=110psec
- This includes timing resolution of reference counter (64psec) and target size effect (61psec).
 - $\sigma_{absolute} = 110psec \bigcirc 64psec \bigcirc 61psec$

= 65psec

Summary

- High-performance LXe scintillation detector was developed for the MEG experiment.
- 100L prototype detector with higher-QE PMTs was tested out using high-energy photon beam.
- Energy resolution of 1.23% (in sigma on the right side) and timing resolution of 65psec in sigma were obtained for 55MeV photon.
- The results from the beam tests confirm that the full-scale detector under construction would fulfill the requirement for the MEG experiment to search for $\mu \rightarrow e\gamma$ with a sensitivity of BR < 10⁻¹³.
- MEG experiment is starting next year together with...

800L Full-Scale Detector Is Showing Up...

