Development of a Thin-wall Superconducting Magnet for the Positron Spectrometer in the MEG Experiment

W.Ootani^a, W.Odashima^b, S.Kimura^b, T.Kobayashi^b, Y.Makida^c, T.Mitsuhashi^a, S.Mizumaki^b, R.Ruber^d, A.Yamamoto^c

^aICEPP, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan

^bToshiba Corporation, Tsurumi-ku, Yokohama, 230-0045, Japan

^CHigh Energy Accelerator Research Organization(KEK), Tsukuba, Ibaraki, 305-0801, Japan ^dCERN, Geneve, CH-1211, Switzerland

MT-18, Oct.23 2003, Iwate, Japan

Outline

MEG Experiment COBRA Spectrometer in the MEG experiment Magnet Design Excitation Tests Summary and Conclusion

MEG Experiment

MEG detector Liq. Xe Scintillation Compensation coil Detector COBRA magnet Thin Superconducting Coil **Stopping Target** Muon Beam **Timing Counter** e **Drift Chamber** LXe photon detector Drift chamber Timing counter 1m

- Search for lepton flavor violating decay, $\mu^+ \rightarrow e^+ \gamma$ down to BR~10⁻¹⁴-10⁻¹³ (SU(5)SUSY-GUT predicts BR>10⁻¹⁴-10⁻¹²)
- World's most intense DC muon beam at Paul Scherrer Institute, Switzerland
- Liquid xenon photon detector
- COBRA positron spectrometer based on a superconducting solenoidal magnet with a graded B field

COBRA Spectrometer

- Constant Bending RAdius(COBRA) positron spectrometer
 Special graded B field
 - Constant projected bending radius for monochromatic positron independent of emission angle
 - →Easily define momentum window
 - Quick sweep-out of positron
 - → Stable operation of chamber system in high rate muon beam

What is needed for the Magnet?

Transparent for 52.8MeV γ from µ⁺→e⁺γ
 Graded magnetic field for high precision tracking of positron in high rate muon beam
 Cancelation of stray field down to 50Gauss for proper operation of the photon detector Cryostat of superconducting magnet Compensation coil

Graded B Field

Step-structure in the coil layout and adjustment of the current density in each coil to form the good field gradient

 \odot Bc=1.27T B_{z=1.25m}=0.49T

Coil Design

- High-strength Al-stabilized conductor is used to minimize coil thickness.
- The conductor is wound edge-wise in four layers inside 2mm-thick Al support cylinder.
- 0.1mm-thick pure Al-strip is attached inside the coil for fast quench propagation.
- Total thickness of 0.197X₀(Al 4.7g/cm² equiv.) in the central region.

Development of Conductor

- High-strength Al-stabilized conductor was developed to realize thin coil.
- Al-stabilizer is reinforced by means of "Micro-alloying" and "Cold-work hardening ".
- S000ppm Ni added into pure Al.
- Al3Ni(contributes to strength) precipitated in pure Al(contributes to conductivity).
- Yield strength = 240MPa (NbTi/Cu/Al) at 4.2K

Excitation Tests

The magnet was successfully tested up to 380A (5.6% higher than operating current)
Axial field profile was measured at 200A Good agreement with calculation!

Quench Tests

- Quench propagation observed by voltage taps, temperature sensors and Superconducting quench detectors (SQDs).
- Severest test: heater quench test at central coil at 360A.
 - Quench induced by firing a heater in the central coil, which is the farthest coil from the refrigerator.
 - DC OFF and quench protection heater ON after the quench is detected.

Voltage Change in Quench Test

 Maximum voltage across the central coil of 1200V was observed ~500msec after the quench in the central coil.

Mechanical Strength

- Strains in the central coil and support cylinder measured up to coil current of 380A.
- Fairly linear relation between strain and I²
- Sufficient mechanical strength

Stray Field Cancellation

Cancellation of stray field around the photon detector region by using compensation coils
 Cancellation down to 50Gauss achieved!

Summary

- A thin-wall superconducting magnet with field gradient was developed for the COBRA positron spectrometer in the MEG experiment.
- Total thickness of 0.197X₀ is achieved by using a highstrength AI stabilized conductor(overall YS=240MPa at 4.2K).
- The magnet was successfully tested up to 380A(5.6% higher than operating current).
- Measured magnetic field gradient shows a good agreement with calculation.
- Cancellation of stray magnetic field down to 50Gauss around the photon detector by compensation coils is achieved.
- Quench tests up to the operating current were done.
- The results from the tests indicate that the magnet has a good performance with a reasonable margin for operation in the COBRA spectromer.

End of Slides

SQD Reaction in Quench Test

Time[msec]	
-130	Heater at central coil is fired
0	SQD reacted at central coil
+54	Protection heaters ON
+74	DC OFF
+(150-200)	SQDs reacted at the other coils

Temperature Rise in Quench Test

Temperature was peaked at 110K in the central coil 16sec after the quench occurred.

Magnet Parameters

Step structure

Coil	Central	Gradient	Inner end	Outer end	Compensation
Conductivity	Super	Super	Super	Super	Resistive
Inner dia. (mm)	699.1	809.1	919.1	919.1	2210
Outer dia. (mm)	711.6	820.6	929.5	929.5	2590
Length (mm)	240.3	110.4	189.9	749.2	265
z of coil center(mm)	0	± 235	± 405.4	± 874.95	±1190
Layers	4	4	3	3	14
Turns per layer	267	123 (1st) 92(2nd-4th)	80	624 (1st-2nd) 92(3rd)	20
Turns (total)	1068	399	240	1548	280
Winding density(Turns/m)	4444.4	3614.1	1263.8	2066.2	1056.6
Winding	e-w	e-w(1st) f-w(2nd-4th)	f-w	f-w	double pancake
Inductance(H)	1.64	0.62	0.35	2.29	0.54
Current (A)	360	360	360	360	360
Energy E (kJ)	106	40	23	148	35
Weight M (kg)	9	4	7	28	1620
$E/M~({\rm kJ/kg})$	11.8	10.0	3.3	5.3	0.02

Current density adjustment

Transparency

	Equivalent thickness	Radiation thickness	
	g/cm^2	X_0	
Coil			
Conductor(Al)	0.745	0.0312	
Conductor(NbTi/Cu)	0.868	0.0766	
Insulation(Uplex/G-Epp)	0.069	0.0020	
Epoxy-resin	0.058	0.001	
Support cylinder	0.945	0.0396	
Pure Al strip	0.068	0.003	
Subtotal	2.753	0.153	
Cryostat			
Outer vacuum shell	0.405	0.017	
Radiation shield	0.162	0.007	
Inner vacuum shell	0.405	0.017	
Super insulation	0.105	0.003	
Subtotal	1.192	0.048	
Total	3.83	0.197	

Transmission probability ~0.85 for 52.8MeV photon