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Chapter 1

Introduction

Although the Standard Model of particle physics has been strongly supported by experimen-

tal evidence, it is thought to be a low energy effective field theory of a more fundamental

microscopic theory for very compelling reasons. This implies that new physics comes in at

some mass scale that has remained elusive to past experiments (i.e., the existence of heavy

particles that have not yet been detected). Experimentally, this can be explored in at least

two ways: doing high energy experiments to observe heavy particles directly or doing high

precision experiments to measure small effects in the low energy effective regime, suppressed

by inverse powers of a heavy mass scale.

Pursuing the latter route, the separate conservation of lepton number for each generation

comes into question in theories beyond the Standard Model. While this symmetry is known to

be violated among the neutral leptons by observations of neutrino oscillations, this implies

lepton flavor violating processes among the charged leptons at one-loop order with rates

far too small to detect at present, and indeed every experiment so far has yielded results

consistent with this being a good symmetry among the charged leptons. In the context

of models for new physics, such as supersymmetry, the smallness of lepton flavor violating
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amplitudes is unnatural and extra assumptions are made to address the issue. Even with

additional constraints in place, some models predict rates for lepton flavor violating processes

near the current experimental limits. The decay mode µ → eγ, in particular, has been the

target of numerous search experiments.

The MEG experiment is a µ → eγ search aimed at either a discovery or improving the

limit set by the MEGA experiment of BR(µ+ → e+γ) < 1.2 × 10−11 (90% CL)[1] down to

2 × 10−13. The MEG experiment achieves fast data-taking at comparably low accidental

background rates using the world’s most intense continuous muon beam at PSI, superior

photon timing with a liquid xenon calorimeter, and low-rate positron tracking with a drift

chamber immersed in a graded magnetic field. The most recent result from the MEG exper-

iment, combining data from its 2009 and 2010 physics runs, gives the world’s best current

limit: BR(µ+ → e+γ) < 2.4× 10−12 (90% CL)[2].

This thesis presents an independent µ+ → e+γ search using data from MEG’s second physics

run in 2009. Chapter 2 reviews the Standard Model and the reasons why it is thought to

be incomplete, and discusses the presence of lepton flavor violation in theoretical scenarios

for new physics. Chapter 3 briefly summarizes the history of past µ → eγ searches and

event signatures for signal and background. Chapters 4-6 outline the MEG detector setup,

the reconstruction algorithms, and the calibration procedures. Chapters 7-8 examine the

current level of detector performance. Lastly, chapter 9 presents the results of a maximum

likelihood analysis to set a confidence interval on BR(µ+ → e+γ).
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Chapter 2

Theoretical Background

The Standard Model of particle physics is well-tested but regarded as incomplete. A great

deal of models have been proposed to solve its problems. These models predict relationships

between their free parameters and BR(µ → eγ), which allow for a rate near the current

experimental limit on µ → eγ in some cases. This chapter provides a compendium on the

Standard Model, its shortcomings, and various scenarios for new physics along with the their

predictions for BR(µ→ eγ).

2.1 Standard Model Particle Physics

As reviewed below, the Standard Model of particle physics is a quantum field theory that

comes about uniquely given its field content, gauge groups, and the requirement that it be

renormalizable.
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2.1.1 Electroweak Theory

An ordinary spin-1
2

fermion may be coupled to the electromagnetic field by subsuming the

inherent global U(1) symmetry

ψ(x)→ e−iθψ(x) (2.1)

of its free field Lagrangian

L(x) = ψ(x)(i/∂ −m)ψ(x) (2.2)

into a more general local U(1) symmetry group

ψ(x)→ e−iθ(x)ψ(x). (2.3)

Eq. 2.3 leaves the action invariant if a simultaneously transforming massless field

Aµ → Aµ −
1

e
∂µθ(x) (2.4)

is introduced to form the most general (aside from one conveniently fixed constant) U(1)

gauge invariant Lagrangian with, at most, second derivatives

L = ψ(x)(i /D −m)ψ(x)− 1

4
FµνF

µν (2.5)

where

Dµ ≡ ∂µ − ieAµ(x) (2.6)
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and

Fµν ≡ ∂µAν − ∂νAµ. (2.7)

The Euler-Lagrange equation for ψ gives the Dirac equation in an electromagnetic field if

Aµ is interpreted as the vector potential and e is the electric charge of the ψ field, while the

Euler-Lagrange equations for Aν give Maxwell’s equations if ejν with

jν ≡ ψγνψ (2.8)

is identified as the electromagnetic current density for the ψ field. In fact, jν is precisely the

Noether current associated with the global symmetry Eq. 2.1 of the Lagrangian.

If the weak force is to follow from a comparable symmetry, its form must conform to some

highly constraining experimental results that were historically instrumental in suggesting

the eventual Glashow-Weinberg-Salam model. Apart from their charge and mass difference,

the electron e and neutrino νe look the same from the point of view of weak interactions.

Although it becomes more approximate with heavier lepton generations, the symmetry is still

there, and interactions appear to take place with a universal coupling strength. Experimental

establishment of maximal parity violation then seals the chiral nature of the assertion that

the Lagrangian obeys an SU(2)L gauge symmetry of the lepton doublets

L1 =



νe

e



L

L2 =



νµ

µ



L

L3 =



ντ

τ



L

. (2.9)

Their lack of participation in weak interactions places right-handed leptons in SU(2)L sin-

glets:

R1 = eR R2 = µR R3 = τR, (2.10)
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while the complete failure to even observe the neutrino partners (νe,R, νµ,R, ντ,R) prompts

their exclusion from the theory entirely. This choice of symmetry group finds validation in

the Noether currents,

J iµ =
3∑

l=1

Llγµ
τ i

2
Ll i = (1, 2, 3), (2.11)

which reproduce the Fermi currents of the successful low energy V-A theory as well as an

additional neutral current upon redefinition:

J+
µ = J1

µ + iJ2
µ =

1

2

3∑

l=1

νlLγµlL

J−µ = J1
µ − iJ2

µ =
1

2

3∑

l=1

lLγµνlL

J3
µ =

1

2

3∑

l=1

νlLγµνlL − lLγµlL. (2.12)

As always, the Noether charges,

T i =

∫
J i0(x)d3x (2.13)

mimic the algebra of the generators:

[T i, T j] = iεijkT k. (2.14)
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Similar arguments applied to the quark sector lead to the classification:

QL1 =



u

d



L

QL2 =



c

s



L

QL3 =



t

b



L

UR1 = uR UR2 = cR UR3 = tR

DR1 = dR DR2 = sR DR3 = bR (2.15)

with the caveat that generation changing currents, albeit suppressed, do occur. With so

much inequity between the left and right-handed fermions, the theory will never recover

electromagnetism without a parity respecting U(1)em symmetry. Electric charge, however,

cannot possibly generate a simultaneous U(1) symmetry at this point because the SU(2)L

doublets house fields of dissimilar charge. Rather, one must look to the hypercharge,

Y

2
= Q− T 3, (2.16)

as the only possible linear combination of the neutral current charges Q and T 3 capable

of generating a U(1)Y symmetry. Thus, the electroweak Lagrangian depicts a Yang-Mills

gauge theory that is invariant under the direct product group SU(2)L ⊗ U(1)Y of local

transformations:

SU(2)L : e−iα
i(x) τ

i

2

U(1)Y : e−iβ(x)Y
2 , (2.17)

where τ i are the Pauli matrices when acting on left-handed doublets and zero when acting

on right-handed singlets, and of course Y is the field’s hypercharge.
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Implementing the symmetry outlined in Eq. 2.17 results in the generation ex nihilo of

interaction-mediating gauge bosons in the SU(2)L ⊗ U(1)Y invariant Lagrangian:

L = −1

4
F i
µνF

iµν − 1

4
BµνB

µν +
3∑

l=1

(Lli /DLl +Rli /DRl +QLli /DQLl

+URli /DURl +DRli /DDRl). (2.18)

Left-handed doublets with hypercharge eigenvalue Y experience the covariant derivative

Dµ = ∂µ − ig
~τ

2
· ~Aµ − ig′

Y

2
Bµ (2.19)

while for right-handed singlets of hypercharge Y

Dµ = ∂µ − ig′
Y

2
Bµ (2.20)

with gauge boson fields Aiµ (i=1,2,3) needed for local SU(2)L invariance and Bµ for local

U(1)Y invariance as well as their respective gauge coupling constants g and g′. The corre-

sponding gauge invariant field strength tensors are

F i
µν = ∂µA

i
ν + ∂νA

i
µ + gεijkA

j
µA

k
ν (2.21)

Bµν = ∂µBν − ∂νBµ. (2.22)

2.1.2 The Higgs Emerges

Inhibited by the very SU(2)L ⊗ U(1)Y invariance that defines the theory, not one field can

have a mass term. Furthermore, the Lagrangian, as it stands, fails to represent the U(1)em
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symmetry that is empirically observed. For it to be realistic, this theory must undergo a

symmetry breaking of SU(2)L⊗U(1)Y down to U(1)em by some mechanism. In the absence

of any force with a much larger energy scale than QCD, the symmetry breaking must take

place at tree level to give large enough masses to the gauge bosons. This approach leads

to the Higgs mechanism adopted by the Standard Model. By acquiring a non-zero VEV,

an additional field could break the SU(2)L ⊗ U(1)Y symmetry and generate masses for the

fermions and gauge bosons. It cannot be coupled to the fermions in a gauge-invariant and

renormalizable way unless it comes in a Y = 1 SU(2)L doublet and has mass dimension 1,

and its VEV will not retain Lorentz invariance unless it is a scalar field. This scalar doublet,

φ =



ϕ+

ϕ0


 , (2.23)

can then enter the Lagrangian in several new gauge-invariant terms:

Lφ = (Dµφ)†(Dµφ)− V (φ†φ)−
3∑

l,m=1

GlmLlφRm + ΓDlmQLlφDRm

+ΓUlmQLl(iτ2φ
∗)URm + h.c. (2.24)

Renormalizability demands the early termination of the power series expansion of V (φ†φ):

V (φ†φ) = m2φ†φ+ λ(φ†φ)2. (2.25)

When λ > 0 and m2 < 0, the scalar potential assumes a festive Mexican hat shape, which is

minimized by any one of a continuous set of degenerate vacua satisfying

φ†φ =
v2

2
, with v =

√
|m2|
λ

. (2.26)
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Not just any vacuum is acceptable, but the choice

〈φ〉 =




0

v√
2


 (2.27)

will indeed leave the electric charge generator Q unbroken:

Q 〈φ〉 = 0. (2.28)

When the Lagragian is then re-expressed in terms of the field shifts from the classical vacuum,

two separate mass matrices arise from the Higgs coupling to the gauge bosons through the

covariant derivative (Dµφ)†(Dµφ). One gives rise to the charged vector bosons as its mass

eigenstates

W±
µ =

1√
2

(A1
µ ∓ iA2

µ) (2.29)

with mass eigenvalue

MW =
1

2
gv. (2.30)

The other contains a zero eigenvalue corresponding to the massless photon

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ) (2.31)

with the coupling constant (electron charge)

e =
gg′√
g2 + g′2

, (2.32)

10



as well as a massive neutral boson

Zµ =
1√

g2 + g′2
(gA3

µ − g′Bµ) (2.33)

with mass eigenvalue

MZ =
1

2
v
√
g2 + g′2. (2.34)

From Eq. 2.24, no symmetry constrains the nine independent parameters of the tree-level

lepton mass matrix:

L(mass)
lepton = −

[
eL µL τL

]



mee meµ meτ

mµe mµµ mµτ

mτe mτµ mττ







eR

µR

τR




+ h.c. (2.35)

This is taken into the mass eigenstate basis by suitable separate unitary transformations on

the chiral components:




e′L

µ′L

τ ′L




= U †




eL

µL

τL







e′R

µ′R

τ ′R




= V †




eR

µR

τR




(2.36)

thereby diagonalizing the mass matrix

U †MV =




me 0 0

0 mµ 0

0 0 mτ



, (2.37)

which is real once all phases are absorbed into field redefinitions. In terms of mass eigenstates,
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the lepton fields,

Ll =




νlL

Ul1e
′
L + Ul2µ

′
L + Ul3τ

′
L


 (2.38)

Rl = Vl1e
′
R + Vl2µ

′
R + Vl3τ

′
R

appear to mix generations; however, we are free to affect the field redefinition:

L′l =
3∑

j=1

U †ljLj =



U †l1νeL + U †l2νµL + U †l3ντL

l′L


 =



ν ′lL

l′L


 (2.39)

R′l =
3∑

j=1

V †ljRj = l′R.

As long as neutrinos are treated as massless, then any linear combination of them is a viable

physical basis of mass eigenstates. In the basis of leptons l′ and ν ′l , no flavor mixing takes

place in the Lagrangian.

With no massless components, the quark sector splits into two independent 3×3 mass mixing

matrices by virtue of the two different values of electric charge present in each of the three

quark doublets:

L(mass)
quark = −

3∑

i,j=1

DLiM
D
ijDRj −

3∑

i,j=1

ULiM
U
ijURj + h.c. (2.40)

By convention, off-diagonal elements in MD give rise to generation changing quark transi-

tions, and the very scheme of 3 generations is itself the minimal possible model involving a

relative lack of quark fields available for absorbing all the phases of the CKM matrix hence

providing the means to reproduce CP violation as observed in KL decays.
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Electroweak “unification” is realized by the vacuum and its distance from the field space

origin, which effectuates mass mixing of gauge particles from separate gauge groups, and,

because it leaves one combination of generators unbroken rather than none, allows one par-

ticular quantum number to emerge unscathed from an otherwise ruinous agglomeration of

shattered symmetries. In a stronger sense, however, this is not the same kind of single

coupling constant unification sought after by GUTs, for despite its accurate portrayal of

two different forces of nature, their alleged union is merely the peculiar mingling of two

independently postulated gauge groups with two different coupling constants.

2.1.3 Limits of the Standard Model

The Standard Model is based on 19 free parameters (9 fermion masses, 4 fermion mixing

parameters, the QCD vacuum angle, 3 coupling constants, and 2 parameters in the Higgs

potential) whose values cannot be predicted from any underlying principles. Various features

at tree-level have been experimentally verified, for example, all of its particles except the

Higgs have been observed. An extraordinary amount of precision tests of its predictions at

the quantum level have also been carried out with good agreement.[3] The state of blissful

repose found in that harmony between theory and experiment, however, is disquieted by

a number of fundamental shortcomings and aesthetic problems that plague the Standard

Model.

The Standard Model does not attempt to include general relativity. Since these effects

become important near the Planck scale, MPl ∼ 1018 GeV, the Standard Model can work

well at everyday energies as a low-energy effective field theory. The Standard Model also

lacks a dark matter candidate. While one can extend the Standard Model to include neutrino

masses, that part of the Lagrangian is not well constrained (see section 2.3.2), and the number

of free parameters increases.
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In addition, there are cases of required unnatural fine-tuning for the theory to be consistent.

The three forces require three coupling constants that do not quite intersect when run to

high energies. Charge quantization is left unexplained. The existence of three generations,

and the sheer number of input parameters in general is unappealing. Perhaps the most

outstanding fine tuning problem is that of the Higgs self-energy, which is discussed at length

in section 2.2.

2.2 The Case for Supersymmetry

With its construction based partially on the deliberate omission of operators with dimension

greater than four from the Lagrangian, the Standard Model technically indulges the physicist

with the power to circumvent infinite loop corrections to a particle mass and renormalize

them against its bare mass into an appropriate phenomenological value regardless of the ex-

tent to which fine-tuning is required. As one descends the ladder of spin, various symmetries

play a curious role in the degree of “naturalness” in this procedure. Spin-1 gauge bosons,

which arise in the Standard Model as constructs to enforce its three gauged symmetries, are

shielded from acquiring mass by the same symmetries that their existence maintains. Al-

though gauge invariance is vacuously true at tree level, anomalies can potentially invalidate

gauge invariance at one loop. As a result of the vanishing of

tr [{Tα, Tβ}Tγ] , (2.41)

however, gauge invariance remains intact in the Standard Model and its gauge bosons natu-

rally remain massless. Considering the 173 GeV-top quark, spin-1
2

fermions apparently did

not procure such effective sanctuary. More importantly, one finds that the fermion self-energy
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diverges logarithmically; the bare electron mass, in particular, is shifted by

δme ≈ 2
αem
π
me log

Λ

me

(Λ→∞). (2.42)

From the low-energy effective field theory stance, however, the Standard Model is not valid

beyond some large energy scale Λ = MPl, thus, neglecting effects beyond this scale, one finds

a more placid correction: δme ≈ .24me. The dependence on me is a vestige of the breaking

of an otherwise exact chiral symmetry by a non-zero tree level electron mass. In the limit

me → 0, an exact chiral symmetry keeps the electron massless to all orders in perturbation

theory.

Ironically, the simplest representation of the Lorentz group demands the most byzantine fine

tuning procedure of all. The Standard Model spin-0 neutral higgs scalar receives quadrat-

ically divergent corrections to its propagator due to fermion loops. Even with a cutoff

Λ = MPl, the correction tends to drive the Higgs mass toward the Planck scale. From Eq.

2.24, any transformation φ′ = Aφ + B that is a symmetry of the Lagrangian has B = 0

due to the Yukawa couplings, and a unitary operator A. Whether mϕ0 = 0 or not, the

symmetry group is exactly the same, which means that no symmetry protects the Higgs

mass and the corrections are therefore independent of mϕ0 . Now all naturalness is lost, for

one must balance large corrections with a similarly large bare mass just delicately enough

to leave an observable mass of order 1 TeV or less. This gauge hierarchy problem makes for

one convincing argument in favor of physics beyond the Standard Model. One stoic gaze at

the one-loop correction to m2
H due to a fermion coupling −λfHf̄f :

∆m2
H = −|λf |

2

8π2
Λ2
UV + non− quadratically divergent terms (2.43)

reveals at once to the trained eye that its Λ2
UV term would be precisely canceled by the

one-loop corrections to m2
H due to the coupling of 2 complex scalars − |λf |2 |H|2 |SL|2 and
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− |λf |2 |H|2 |SR|2. One expects that a hypothetical symmetry relating fermions and bosons

is a space-time symmetry because the gap between a spin-0 scalar and a spin-1
2

fermion can

only be bridged by an operator that shifts (spin) angular momentum. This is seemingly

at odds with the no-go theorem of Coleman-Mandula[4] that constrains the Lie algebra of

the S-matrix symmetry generators of any consistent quantum field theory to be a direct

product of the Poincaré group and an internal symmetry group. By assuaging the harshness

of that theorem’s assumptions through the permission of generators that form a graded

Lie algebra, the Haag-Lopuszanski-Sohnius theorem[5] was precisely the necromancer that

resurrected the possibility of non-trivial extension of the Poincaré group. In that case, the

most general algebra that generates symmetries of the S-matrix consistent with relativistic

quantum field theory is (with some reasonable assumptions and the omission of central

charges for simplicity):

{
QA
α , QβB

}
= 2σmαβPmδ

A
B (2.44)

{
QA
α , Q

B
β

}
=
{
QαA, QβB

}
= 0 (2.45)

[
Pm, Q

A
α

]
=
[
Pm, QαA

]
= 0 (2.46)

[Pm, Pn] = 0 (2.47)

where Greek letters are Weyl spinor indices running from 1 to 2; Latin letters are Lorentz

indices from 1 to 4; and finally, capital letters span an internal space from 1 to N. Further

discussions will perpetuate the pigeonholing of central charges and consider only the N=1

case.

Clearly no ordinary field transformation suffices to capture a SUSY transformation, since the

generators do not satisfy a Lie algebra. For this, one introduces anti-commuting Grassmann
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spinors:

{
θα, θβ

}
=
{
θα, θβ̇

}
=
{
θα̇, θβ̇

}
= 0, (2.48)

which allows one to construct combinations of generators that do satisfy a Lie algebra:

[
θQ, θ Q

]
= 2θσmθPm (2.49)

[θQ, θQ] =
[
θ Q, θ Q

]
= 0. (2.50)

A general SUSY transformation

ei(θQ+Qθ−xµPµ) (2.51)

must then operate upon objects that contain bosons and fermions and have functional de-

pendence on x, θ, and θ. These “superfields” have two important manifestations that form

irreducible representations of the SUSY algebra. In the left and right chiral representations

of the SUSY generators:

Pµ = i∂µ, QL
α =

∂

∂θα
, Q

L

β̇ = − ∂

∂θ
β̇

+ 2iθασµ
αβ̇
∂µ (2.52)

Pµ = i∂µ, QR
α =

∂

∂θα
− 2iσµ

αβ̇
θ
β̇
∂µ, Q

R

β̇ = − ∂

∂θ
β̇

(2.53)

it is possible to forge SUSY covariant derivatives

{Dα, Qα} =
{
Dα̇, Qα

}
=
{
Dα, Qα̇

}
=
{
Dα̇, Qα̇

}
= 0 (2.54)
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whose asymmetric yet complimentary structure in the fermionic coordinates:

DL
α =

∂

∂θα
+ 2iσµ

αβ̇
θ
β̇
∂µ, D

L

β̇ = − ∂

∂θ
β̇

(2.55)

DR
α =

∂

∂θα
, D

R

β̇ = − ∂

∂θ
β̇
− 2iθασµ

αβ̇
∂µ (2.56)

leads one to define left and right chiral superfields by imposing the blatantly chiral SUSY

covariant constraints:

DΦL = 0 (2.57)

DΦR = 0. (2.58)

Then the most general left chiral superfield, for example, takes a simple form in the left

chiral representation due to the nilpotency of Grassmann numbers (i.e. θ1θ1 = θ2θ2 = 0):

ΦL(x, θ) = φ(x) +
√

2θαψα(x) + θαθβεαβF (x). (2.59)

The SUSY covariance property Eq. 2.54 parents the closure of the SUSY algebra in this

representation; no transformation of the form Eq. 2.51 can turn a left (or right) chiral

superfield into one that is not. With two physical fermionic degrees of freedom (on-shell),

the second term in Eq. 2.59 represents a left or right-handed SM fermion. Since θ has mass

dimension −1/2, which follows from Eq.’s 2.52 and 2.53, ψ(x) and φ(x) may be assigned the

customary mass dimensions of 3/2 and 1 for SM fermions and their superpartners (sfermions)

respectively. Off-shell, the two real propagating degrees of freedom in φ(x) are augmented

by the two real degrees of freedom in the residual field, F , to match the four real degrees of

freedom in ψ(x).
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To capture the rest of the known spectrum, one needs superfields for the spin-1 gauge bosons

and their superpartners (gauginos). Borrowing the characteristic gauge field property of self-

conjugacy, one defines vector superfields by:

V (x, θ, θ) ≡ V †(x, θ, θ). (2.60)

The most general vector superfield satisfying Eq. 2.60 is a heinous divagation from simplicity

that retains several unphysical degrees of freedom. Simplification requires the generalized

gauge transformation law for a chiral (matter) superfield Φ charged under a gauge group

with generators Ta and the vector (gauge) superfield(s) Va to which it couples:

Φ→ eΛaTaΦ (2.61)

eVaTa → e−(ΛaTa)†eVaTaeΛaTa (2.62)

where Λa is a set of chiral superfields. Capitalizing on the freedom in Eq. 2.62, a vector

superfield may be expressed compactly in the Wess-Zumino gauge:

V (x, θ, θ) = θ σµθAµ(x) + iθθθλ(x)− iθθθλ(x) +
1

2
θθθθD(x). (2.63)

Under a SUSY transformation, Eq. 2.51, the spatial and fermionic coordinates undergo a

translation, which cannot introduce non-real terms to a real superfield, Eq. 2.63. Thus,

the constraint Eq. 2.60 is once again SUSY covariant. As the only candidate with two real

degrees of freedom (on-shell), the real field Aµ can be identified as a spin-1 gauge field, duly

requiring the complex spinor λ to assume a mass dimension of 3
2
, a felicitous attribute for a

spin-1
2

gauge field superpartner or gaugino. Off-shell, the three real propagating degrees of

freedom in Aµ(x) are augmented by one real degree of freedom in the residual field, D, to

match the four real degrees of freedom in λ(x).
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To assemble a supersymmetric action from chiral and vector superfields, it is sufficient that

the Lagrangian transforms as a total derivative under a supersymmetry transformation,

for vanishing boundary conditions, by the divergence theorem. In fact, the “F-term” of a

chiral superfield (Eq. 2.59) and the “D-term” (Eq. 2.63) of a vector superfield transform in

precisely this manner.

Starting with the latter, one can build vector superfields out of a set of chiral superfields,

Φi, to produce the supersymmetric, renormalizable, and gauge invariant Lagrangian:

LKinetic =

∫
d2θd2θ[KijΦie

2gQjVaTaΦ†j + (H ijΦie
2gQjVaTaΦj + h.c.)] (2.64)

where Kij is real and symmetric under the interchange of i and j.[6] The integrand is called

the Kähler potential and is responsible for kinetic terms and gauge interactions.

As for the former, one can build chiral fields out of any product of chiral fields to produce

the supersymmetric and renomarlizable Lagrangian:

LSuperpotential =

∫
d2θ(kiΦi +

1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk). (2.65)

Here the integrand is called the superpotential, a completely holomorphic function of the

chiral superfields, which is responsible for mass and interaction terms. Gauge invariance

typically forces certain components of k, m, and λ to vanish.

To construct a supersymmetric version of the kinetic term for the gauge fields, one first

defines the left chiral superfield:

Wα = (Dα̇Dβ̇ε
α̇β̇)e−gVDαe

gV . (2.66)

The product WαW
α, also a left chiral superfield, can be shown to be gauge invariant, and
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the supersymmetric Lagrangian:

LPure Gauge =
1

32g2

∫
d2θWαW

α (2.67)

gives the usual kinetic term for gauge fields as well as a corresponding term for the gauginos

and a coupling between the two. Wα can be thought of as the supersymmetric field strength

tensor.

With all members of a super multiplet forced into mass degeneracy by the form of the super-

potential (Eq. 2.65), any supersymmetric model built from Eq.s 2.64-2.65 stands in vexing

incongruity with experiment. No charged scalar with the same mass as the electron, for

example, has ever been detected. For this reason, supersymmetry must be broken to give

heavier masses to the, as of yet, undetected superpartners of Standard Model particles. This

can be incorporated into a model by adding soft breaking terms that retain the cancella-

tion of quadratic divergences. Scalar mass terms (−m2
φi
|φ|2), trilinear scalar interactions

(−Aijkφiφjφk +h.c.), gaugino mass terms (−1
2
mlλlλl), bilinear terms (−Bijφiφj+h.c.), and

linear terms (−Ciφi) all meet this requirement[7].

Since any realistic supersymmetric theory must break down to the Standard Model at low

energies, a bottom-up approach can be used to construct a minimal supersymmetric model

that contains the necessary gauge groups, fields, and interactions needed to reproduce Stan-

dard Model physics. This leads to the Minimal Supersymmetric Standard Model (MSSM).

It is defined by its field content, gauge groups, superpotential, and soft breaking terms. Two

Higgs doublets are required because one would not be enough to give masses to both up and

down types of quarks given that the superpotential must be holomorphic. Then the MSSM

consists of the Standard Model gauge group, a superfield for each Standard Model particle
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(and its superpartner), two Higgs superfields (H and H) instead of one, a superpotential:

WMSSM =
3∑

i,j=1

[
(λE)ijHLiE

c
j + (λD)ijHQiD

c
j + (λU)ijHQiU

c
j

]
+ µHH, (2.68)

and all possible soft breaking terms. While it is tempting to label this as a low energy ef-

fective supersymmetric field theory, it contains greater than 100 free parameters due to the

large number of possible soft breaking terms and is not very predictive. Phenomenologically,

supersymmetry breaking cannot originate from renormalizable tree level interactions involv-

ing MSSM fields; it must occur in a hidden sector that shares interactions with but does not

couple directly to the visible sector of MSSM fields, giving rise to the soft breaking terms

through some messenger field(s).[8] Consequently, the scale of supersymmetry breaking and

dynamics of the theory can be very different depending on what this mechanism is. In par-

ticular, it is impossible to make model-independent predictions about lepton flavor violation

and the result is completely at the mercy of the UV completion of the MSSM.

2.3 Lepton Flavor Violation

This section discusses the status of lepton flavor violation in the Standard Model and beyond.

2.3.1 LFV in the Standard Model

In the standard model with massless neutrinos, it is possible to find a basis of lepton dou-

blets (L′l) and singlets (R′l), given explicitly in Eq. 2.38, that classically conserves lepton

flavor for each generation (l = e, µ, τ). The Lagrangian is invariant under three global U(1)

22



transformations:

L′l → e−iqlL′l (2.69)

R′l → e−iqlR′l,

giving rise to three conserved Noether charges

Ql =

∫
d3x(l′†L l

′
L + l′†Rl

′
R + ν ′†lLν

′
lL) = Nl −N l, (2.70)

which correspond to the familiar definition of lepton number as the number of particles minus

the number of antiparticles of that flavor. Although Eq. 2.69 is a symmetry of the action, it

is not a symmetry of the measure of the path integral, and separate lepton flavor conservation

is spoiled by instantons at the quantum level. Nonetheless, certain non-anomalous global

symmetries involving baryon number and lepton number are retained: B − L, Lµ − Le, and

Lτ−Le. Together they prevent the occurrence of processes such as µ→ eγ and the generation

of any possible neutrino mass term at even the non-perturbative level.[9] In light of definitive

observations of neutrino oscillations, the Standard Model Lagrangian must be augmented by

neutrino mass terms, whose precise form remains unknown, and these symmetries no longer

hold in general. The sector describing neutrino masses takes the general form:

−2L = ~νcMν~ν + h.c. =

[
νL νcR

]


mL mT

D

mD MR






νcL

νR


+ h.c. (2.71)

The mass matrix, Mν , in Eq. 2.71 must somehow reproduce a set of light neutrino masses

as measured by several experiments. Regardless of its true form, µ → eγ does receive

contributions at one loop (shown in Figure 2.1) from neutrino mixing; however, this implies
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BR(µ→ eγ) . 10−54, which is far from measurable [10, 11]. This result is obtained from

BR(µ→ eγ) =
3α

32π

∣∣∣∣∣
∑

i

(VPMNS)∗µi(VPMNS)ei
m2
νi

M2
W

∣∣∣∣∣

2

(2.72)

using the current measurements of the differences in the squared neutrino masses:

|∆m2
32| ≈ 2.5× 10−3eV 2 (2.73)

∆m2
21 ≈ 7× 10−5eV 2. (2.74)

µ±
e±

W±

γ

νiUµi U ∗
ei

Figure 2.1: Active neutrino loop contribution to µ → eγ. The internal fermion line is a
neutrino mass eigenstate. By diagonalizing the neutrino propagator in flavor space, off-
diagonal flavor couplings, Uµi and Uei, are induced.

An observation of µ→ eγ would thus demonstrate the existence of new physics beyond the

most minimal extension of the Standard Model to include massive neutrinos. In other words,

additional diagrams with new matter content would be needed to enhance the branching

fraction given in Eq. 2.72 to something detectable. The following section gives several

examples of such a scenario.
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2.3.2 LFV Beyond the SM

The details behind the mechanism responsible for generating neutrino masses have important

consequences for lepton flavor violation. It’s possible to generate neutrino masses without

introducing any new light particles. The gauge-invariant, dimension-5, irrelevant operator:

λij
M

(LTi σ2φ)C−1(φTσ2Lj) (2.75)

could enter the effective Lagrangian after integrating out some heavy degree of freedom, M.

This produces neutrino masses:

mij ∼
λij 〈φ〉2
M

. (2.76)

If no new physics occurs below the Planck scale, then by setting λij = 1 and M = MPl,

Eq. 2.76 predicts neutrino masses mij ∼ 10−5 eV, which are too small. With right-handed

neutrinos, a Dirac mass term is possible:

Y ν
ijLiφνRj + h.c., (2.77)

yielding neutrino masses:

mD
ij ∼ Y ν

ij 〈φ〉 . (2.78)

If this is the sole source of neutrino mass, unnaturally small values of Y ν
ij ≤ 10−12, compared

to the Yukawa couplings for charged leptons of ∼ 10−6 − 10−3, are required to reproduce

experimental results. Right-handed neutrinos can also occur in bare mass terms, which

respect gauge invariance because they are singlets under Standard Model gauge groups:

MRν
T
RC
−1νR + h.c. (2.79)
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One popular way to achieve small masses for the light neutrinos in a natural way exploits

the fact that MR in Eq. 2.71 is not constrained by any naturalness principle. If one takes

mL=0, then diagonalizing the mass matrix in Eq. 2.71 gives Mν = −mT
DM

−1
R mD for the

light neutrinos. mD is expected to be of the same order as the lepton masses, since they

both arise though Yukawa terms. This requires right-handed neutrino masses in the range of

106−1015 GeV to get the right scale for the light neutrinos.[12] This is referred to as the type

1 seesaw mechanism, and is in fact equivalent to Eq. 2.76 with M being the right-handed

neutrino mass scale.

SUSY In the context of the MSSM, with no inherent guiding principles to limit the form

of the soft breaking terms, it’s unclear why µ → eγ does not take place at large rates.

Off-diagonal slepton mass terms (m2
L̃ij
∼ m2

Sδ
ij
LL) contribute:

BR(li → ljγ) ∼ α3

G2
F

∣∣∣m2
L̃ij

∣∣∣
2

m8
S

tan2 β . (δijLL)2 tan2 β × 10−5. (2.80)

Here the slepton mass matrix elements are normalized to a typical SUSY mass scale of

mS & 100 GeV. To predict acceptable rates for Eq. 2.80, the lepton and slepton mass matri-

ces must be very well aligned; BR(µ→ eγ) . 10−11 requires δ12
LL . 10−3. Such an alignment

is quite puzzling because the lepton masses come from Yukawa interactions and electroweak

symmetry breaking, while the slepton masses arise mostly from SUSY breaking. This is

known as the SUSY flavor problem.[13] A number of solutions have been proposed. In one

class of models, a high degree of degeneracy among slepton masses of different generations

results from dynamics without specific assumptions about flavor. In gauge mediation scenar-

ios, for example, supersymmmetry breaking is delivered to the visible sector by messenger

fields charged under Standard Model gauge groups. In these models, the degree of flavor vio-

lation is tied to the scale of supersymmetry breaking; if the scale of supersymmetry breaking

is low, then the right handed neutrinos decouple before they can contribute to off-diagonal

26



slepton mass elements and there may be no observable lepton flavor violation. Other pro-

posals involve postulating various flavor symmetries or kinematic suppression through heavy

superpartner masses.[14] The following models focus on the gravity mediation scenario, in

which the slepton mass matrix is taken to be diagonal and proportional to the unit matrix

at the Planck scale, MPl ∼ 1018 GeV.

MSSM with Type 1 Seesaw Right-handed neutrinos can be incorporated into the

MSSM through a superpotential for the leptons:

W =
3∑

i,j=1

[
(λE)ijHLiE

c
j + (λν)ijHLiN

c
j +

(MR)ij
2

N c
iN

c
j

]
. (2.81)

Even if a universal scalar mass is assumed at the gravitational scale, slepton mixing is

brought about through the running of the renormalization group equations from the Planck

scale down to the electroweak scale, as illustrated by the diagrams in Figure 2.2. Since this

only affects the left handed sleptons, it predicts µ+ → e+
Rγ via the class of diagrams shown

in Figure 2.3. If neutrino mixing is assumed to come entirely from the Yukawa couplings

in the second term of Eq. 2.81 and not from the third term, then solar and atmospheric

neutrino observations may be used to estimate typical values for BR(µ+ → e+
Rγ), displayed

in Figure 2.4.[15]

SUSY GUTS Supersymmetric grand unified theories possess the attractive feature of

Standard Model gauge coupling unification at an energy scale (∼ 1016 GeV) that is very

close to the estimated seesaw scale (∼ 1015 GeV) and thus may explain the origin of right-

handed neutrinos. The well studied SU(5) unification group cannot achieve this naturally

because the matter representations, 5⊕ 10, do not contain right-handed neutrinos and they

must be added manually.[12] Moreover, minimal SU(5) is ruled out by strong limits on

proton decay from Super Kamiokande.[16]
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l̃Li
l̃Lj

νR

h̃2

l̃Li
l̃Lj

ν̃R

h2

Figure 2.2: Flavor violation in the left-handed lepton sector brought about through quantum
effects involving right-handed neutrinos.

γ

µ± e±

ν̃ (l̃±)

χ̃± (χ̃0)

Figure 2.3: µ→ eγ mediated by slepton mixing.

28



Figure 2.4: Predictions for BR(µ+ → e+
Rγ) at various values of tan β as a function of the

left-handed selectron mass for MR = 1013 GeV, no trilinear coupling, and a 200 GeV wino
mass.
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In contrast, an SO(10) gauge group has a 16-dimensional representation, which can natu-

rally accommodate all 15 fermions of a single generation (two quarks and two anti-quarks

per family with three possible colors, a charged lepton and anti-lepton, and a left-handed

Majorana neutrino that is its own anti-particle) as well as a corresponding right-handed

neutrino into a single multiplet. The minimal SO(10) model has the superpotential:

WSO(10) =
1

2
(yu)ijΨiΦuΨj +

1

2
(yd)ijΨiΦdΨj (2.82)

containing the 16-dimensional representation Ψi and two ten-dimensional Higgs fields Φu

and Φd. It can be extended in various ways to include a seesaw mechanism. B − L is a

gaugeable subgroup of SO(10) because anomalies cancel, and right-handed neutrino masses

emerge naturally through the spontaneous symmetry breaking of this subgroup.[12] Most

models work in either the CKM (Cabibbo-Kobayashi-Maskawa) case with small mixing in

the neutrino Yukawa couplings or the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) case with

large mixing in the neutrino Yukawa couplings. In the context of minimal supergravity, the

universal scalar mass m0, trilinear couplings A0, and universal gaugino mass M 1
2

are free

parameters that tie down the theory at the Planck scale. These are accompanied by the

parameters in the superpotential, an undetermined sign in the Higgs potential parameters,

and of course tan β. For fixed tan β, a range in the remaining parameters can be scanned

to make predictions for BR(µ → eγ). This is shown in Figure 2.5 for a range of parameter

space that allows a squark mass below 2.5 TeV, which is LHC accessible.[17]

Other Approaches to the Gauge Hierarchy Problem The presence of measurable

charged lepton flavor violation is not unique to the supersymmetric path beyond the Standard

Model. It can appear in other solutions to the gauge hierarchy problem for various reasons.

In technicolor models, electroweak symmetry is broken dynamically by a fermion condensate

formed by new particles that are charged under a new gauge group. Realistic models require
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Figure 2.5: Predictions for BR(µ → eγ) are shown as a function of the universal gaugino
mass for two cases of tan β, scanning an LHC relevant space in the parameters describing
the Planck scale masses. Both the PMNS case (green) and the CKM case (red) are explored.
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non-universal gauge groups that induce lepton flavor violating couplings of gauge bosons to

lepton mass eigenstates producing µ→ eγ at loop level.[18]

In little Higgs models, a nonlinear symmetry is invoked to get cancellation in the one loop

corrections to the Higgs mass by particles of the same spin. Charged lepton flavor violation

can arise through gauge bosons and exotic scalar multiplets.[18]

Extra dimension models limit the size of the loop corrections to the Higgs mass by reducing

the size of the Planck mass; gravity is only observed to be weak due to loss of flux to extra

dimensions making the gravitational coupling constant larger and the Planck mass smaller

(MPl ∝ 1√
G

). In models explaining neutrino masses in the context of extra dimensions,

right-handed neutrinos can generate µ→ eγ in the bulk with Kaluza-Klein states playing a

role similar to that of sparticles in SUSY scenarios.[18]

Model Discriminating Power Clearly a number of different models could be substanti-

ated by an observation of µ → eγ, but while the predicted rate is highly model dependent,

a positive measurement or more stringent limit would provide a great deal of guidance in

narrowing down the allowed parameter space in each class of models by constraining their

phenomenology. Lastly, a linear correlation between BR(µ → eγ) and BR(µN → eN)

would strongly disfavor scenarios where muon conversion is not dominated by on-shell pho-

ton exchange.[18] Examples of models that would be supported by such an observation are

supersymmetric scenarios (see figure 2.6) and doubly-charged Higgs models.[19]
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Figure 2.6: Example diagram mediating µN → eN in supersymmetric models.
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Chapter 3

Muon Physics

This chapter gives an overview of past µ → eγ searches and explains the event signatures

for signal and background.

3.1 History

The muon was initially discovered by Anderson and Nedermeyer[20] in an experiment that

measured the fractional energy loss of cosmic ray particles penetrating a 1 cm plate of

platinum inside a cloud chamber when a class of penetrating particles was observed to have

a mass consistent with being between that of an electron and that of a proton. At first, it

was identified as the mediator of the force between protons and neutrons as predicted by

Yukawa[21] on the basis of its mass. When experiments later showed that they interacted

very weakly with atomic nuclei[22] and that another type of particle with similar mass, the

pion[23], was found in cosmic rays, that classification was reassigned to the pion. The decay

modes were not known, and the process µ → eγ, which conserves charge and total lepton

number, seemed like a natural candidate mode.
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The first search for µ → eγ was performed by stopping cosmic ray muons in a graphite

absorber and detecting outgoing particles in Geiger-Müller counters giving an upper limit

on the branching ratio of less than 10% [24]. In the first measurement to exploit a man-

made source of muons, the limit was lowered several orders of magnitude to 2 × 10−5.[25]

Improvements in experimental searches for µ→ eγ continued.[26, 27, 28, 29, 30, 31]

In the late 1950’s, it was pointed out that if the form of the 4-fermion interaction was, as

a number of experiments supported, indeed a universal V-A one in which currents inter-

acted with themselves through the exchange of a heavy charged boson, then the predicted

branching ratio for µ→ eγ was about 10−4, at odds with the current experimental limit, al-

though the result was somewhat ambiguous because it depended on the unknown anomalous

magnetic moment of the intermediate boson and the regularization of potentially divergent

integrals.[32] It was suggested that the apparent absence of µ → eγ could be explained by

associating separate lepton numbers for muons and electrons, and requiring them to both

be conserved. In order to explain the abundantly observed µ→ eνν, the outgoing neutrinos

had to also carry muon (νµ) and electron number (νe). Both the two-neutrino hypothesis

and the separate conservation of lepton number were first confirmed in 1962 at Brookhaven

in an experiment that observed νµ + p+ → µ+ + n but not νµ + p+ → e+ + n.[33]

For over a decade after that result, µ→ eγ experiments ceased, until a new era of searches

began in 1977 with an experiment making use of the intense muon beam at the Swiss

Institute for Nuclear Research (SIN)[34, 35], which is the site of present day PSI. More

improvements in the limit followed.[36, 37] The best pre-MEG upper limit of BR(µ+ →

e+γ) < 1.2×10−11 (90% CL) comes from the MEGA experiment at the Los Alamos National

Laboratory Meson Physics Facility (LAMPF).[1] While the process is ruled out exactly in

the Standard Model with massless neutrinos, µ → eγ appears generically in extensions of

the Standard Model, as reviewed in Section 2.3, possibly at rates near the best current limit

of BR(µ+ → e+γ) < 2.4 × 10−12 (90% CL), set by MEG.[2] In an era where beyond the
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Standard Model physics is pervaded by numerous free parameters weakly constrained by

experiments, the prospect for discovery or even a more stringent limit provides an alluring

motivation to look for µ→ eγ. At the time of writing, MEG is the latest such experiment in

a historically rich ongoing hunt. A summary of the measurements of BR(µ+ → e+γ) leading

up to MEG is provided in Figure 3.1.

Other lepton flavor violating muon interactions are predicted by physics beyond the Standard

Model; Table 3.1 summarizes their current limits.

Figure 3.1: A plot of the progress made in improving the upper limit on BR(µ→ eγ) in the
20th century.
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Table 3.1: Current upper limits on exotic muon decay and interaction modes.

Mode UL (90% CL) Reference
BR(µ+ → e+γ) 2.4× 10−12 [2]

BR(µ+ → e+γγ) 7.2× 10−11 [37]
BR(µ+ → e+e+e−) 1.0× 10−12 [38]
BR(µ+ → e+νµνe) 1.2× 10−2 [39]

Γ(µ−+N→e−+N)
Γ(ordinary muon capture)

4.3× 10−12 [40]

3.2 µ→ eγ detection

The use of µ−’s is made untenable by the processes of muon capture and momentum transfer

to the nucleus, hence µ → eγ searches rely on µ+’s. Signal events can be imitated by

two primary sources of background: radiative muon decays and accidental matches of an

unrelated positron and photon. These cases are shown in Figure 3.2.

Figure 3.2: An illustration of the event signatures for signal and background. Detected
particles are indicated in red, while other particles are indicated in blue. Θeγ refers to the
opening angle between the positron and photon, Ee refers to the positron energy, Eγ refers
to the photon energy, te refers to the positron emission time, and tγ refers to the photon
emission time.
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3.2.1 Signal Event Signature

In the muon rest frame, a µ+ → e+γ event is identified by a back-to-back positron and

photon consistent with simultaneous emission from a common vertex, and with energies

approximately equal to half the muon mass. More precisely, conservation of the energy-

momentum 4-vector requires Ee+ = 52.830 MeV and Eγ = 52.828 MeV. Signal events are

discerned from background based on the measured positron energy (Ee), photon energy (Eγ),

difference in emanation times (teγ), and opening angle (Θeγ).

3.2.2 Radiative Decay Background

One source of background comes from radiative muon decays (µ+ → e+νeνµγ) with a nearly

back to back positron and photon saturating their kinematic energy limits; however, the

branching ratio for this process is suppressed in that region of phase space. For Ee > 46

MeV, Eγ > 30 MeV, and no constraint on the opening angle, the radiative decay branching

fraction is of order 10−7, as predicted by theory and as measured by none other than MEG

itself.[41]

The expected amount of background can be calculated by integrating the tree level differen-

tial decay width over a finite signal box. Defining x ≡ 2Ee
mµ

, y ≡ 2Eγ
mµ

, and z ≡ π − Θeγ, and

δx, δy, δz as the respective half-widths of a signal box centered at x = y = 1 and z = 0, the

expected branching ratio for unpolarized muons is [19]:

BRsignal box(µ
+ → e+νeνµγ) =

α

16π
[J1 + J2]. (3.1)
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In the relevant case where δz ≤ 2
√
δxδy:

J1 =
8

3
(δx)3(δy)(

δz

2
)2 − 2(δx)2(

δz

2
)4 +

1

3
(

1

(δy)2
)(
δz

2
)8 (3.2)

J2 = 8(δx)2(δy)2(
δz

2
)2 − 8(δx)(δy)(

δz

2
)4 +

8

3
(
δz

2
)6. (3.3)

Thus, for energy resolutions (δx and δy) of order 1%, a box analysis with high signal efficiency

is subject to radiative decay background at the level of merely 10−15 compared to the signal

sensitivity goal of order 10−13.

3.2.3 Accidental Background

Another source of background stems from accidental occurrences of a positron coming from

Michel decay (µ+ → e+νeνµ) and a photon coming either from radiative muon decay, an-

nihilation in flight of a positron in the stopping target, or bremsstrahlung. The effective

accidental background branching ratio is proportional to the fraction of the accidental spec-

trum in each variable contained in the signal region. Random coincidences of uncorrelated

positrons and photons naturally populate values of teγ, and cos Θeγ (opening angle) uniformly

and the same is approximately true of Ee because the Michel spectrum is roughly flat near

the signal energy as shown in Figure 3.3c. A signal window of width 2δteγ contributes a factor

of (2δteγRµ) to the effective accidental branching ratio where Rµ is the instantaneous beam

rate. If a cut on the opening angle of |Θeγ−π| < δΘeγ is made, it will accept a portion of the

full solid angle that is given by the solid angle subtended by a cone with apex angle 2δΘeγ:

2π(1− cos δΘeγ) ≈ π(δΘeγ)
2. The accepted fraction of the solid angle is then

δΘ2
eγ

4
. The frac-

tion of the Michel spectrum falling in a signal window centered at x = 1 of width 2δx is given

by integrating the differential unpolarized Michel decay branching ratio over 1− δx ≤ x < 1,
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yielding fe ≈ 2δx. The fraction of accidental photons falling in a signal window centered

at y = 1 of width 2δy is well approximated, in the limit that radiative decay photons are

the dominant source of accidental photons, by integrating the differential branching ratio

for radiative muon decay over 1 − δy ≤ y < 1, giving fγ = α
2π

(δy)2[ln(δy) + 7.33], which is

roughly proportional to (δy)2 because the radiative decay photon spectrum descends in an

approximately linear way near y = 1 as shown in Figure 3.3d. The total effective branching

ratio for accidental background events in the signal window can then be written as:

BRsignal box(acc.) = Rµ(2δx)(
α

2π
(δy)2[ln(δy) + 7.33])(2δteγ)(

δΘ2
eγ

4
). (3.4)

For fixed µ+ → e+γ acceptance, the signal window in each variable is proportional to its

resolution. As an example, taking 90% efficient windows in each variable and assuming

Gaussian resolution functions, the effective branching ratio for accidentals at the resolutions

and beam rate quoted by the MEG proposal [42] can be estimated by setting:

Rµ = 3× 107 µ

s
(3.5)

δteγ = 1.64× 64 ps (3.6)

δx = 1.64× 0.004 (3.7)

δy = 1.64× 0.017 (3.8)

δΘeγ = 1.64× 8.7 mrad. (3.9)

With these values, Eq. 3.4 predicts an effective accidental background branching ratio for

MEG at the proposal resolutions of 1.42×10−14. Thus, to suppress the accidental background

rate to the level of about one tenth of the signal sensitivity goal of ≈ 10−13, it is necessary

to achieve these resolutions. Since the radiative decay background is about an order of
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(a) The Michel positron energy spectrum cal-
culated from theory to one-loop for unpolarized
muons.
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(b) The muon radiative decay photon energy spec-
trum calculated from theory at tree-level for un-
polarized muons, integrating over the positron en-
ergy and opening angle. The vertical axis is shown
in logarithmic scale to illustrate the steep descent
in the high energy region.
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(c) A close-up of the high energy region in figure
3.3a.

Photon energy (MeV)
48 48.5 49 49.5 50 50.5 51 51.5 52 52.5 53

N
or

m
al

iz
ed

 b
ra

nc
hi

ng
 r

at
io

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-310´

(d) A close-up of the high energy region in figure
3.3b. The vertical axis is shown in linear scale to
illustrate the approximately linear shape in this
energy region.

Figure 3.3: The accidental background energy spectra. Each differential branching ratio is
normalized to be unity at its maximum value.
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magnitude smaller at comparable resolutions, the accidentals constitute the dominant source

of background.

42



Chapter 4

MEG Hardware

This chapter describes the hardware components of the MEG experiment.

Antimuons are brought to rest in a thin stopping target and detectors are positioned to

measure photons and positrons from µ+ → e+γ. MEG uses a continuous muon beam with a

stopping intensity of ∼ 30 MHz. In the previous µ+ → e+γ search, the MEGA experiment,

a pulsed beam of instantaneous stopping intensity ∼ 250 MHz and 6.7% duty cycle was

used. MEG is able to take data 1.8 times faster than MEGA and faces 12% of the accidental

background rate of MEGA for the same region in Ee, Eγ, teγ and Θeγ.

Positrons are tracked in a magnetic spectrometer with a graded magnetic field designed

to limit the rate without sacrificing acceptance. The momentum is measured by a set of

low-mass drift chambers and the time is measured by an array of scintillation counters. In

the MEGA experiment, the magnetic field was uniform, thus, as discussed in section 4.4.1,

the bending radius depended on the emission angle and the number of turns made in the

spectrometer was not limited as in the case of a graded field.

Photons are detected in a fully-absorbing liquid xenon calorimeter, which can achieve good
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timing resolution (∼ 40 ps) and high detection efficiency (∼ 60%). In MEGA, a thin layer of

lead was used to induce photons to pair produce, and the resulting positrons and electrons

were detected in drift chambers and plastic scintillators. Because the lead was thin, resulting

in good energy resolution, the detection efficiency for photons was low (∼ 5%). The timing

resolution was ∼ 600 ps.[43]

4.1 Beam

To make a discovery or lower the limit on BR(µ+ → e+γ) down to the ∼ 10−13 level, MEG

requires an extremely intense source of µ+’s. Since a continuous beam operates at a lower

instantaneous rate than a pulsed beam for the same amount of muons, it is the optimum

choice from the perspective of reducing accidental background. For these reasons, the MEG

experiment uses the 590 MeV proton ring cyclotron facility at the Paul Scherrer Institut

(PSI) in Villigen, Switzerland, the world’s most intense continuous muon source.

4.1.1 Proton Accelerator Complex

A Cockcroft-Walton accelerator first injects 870 keV protons into a ring cyclotron called

Injector 2. They are then injected with an initial energy of 72 MeV into the center of

another ring cyclotron and reach 590 MeV energies to form a beam current of 2.2 mA. The

590 MeV ring cyclotron is shown in Figure 4.1. They are then directed to a series of meson

production targets, one of which, dubbed target E, is a 4 cm thick graphite target.
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Figure 4.1: An aerial view of the 590 MeV ring cyclotron at PSI.

4.1.2 πE5

πE5, one of several secondary beam lines sharing target E as their source, supplies low energy

pions and muons. This beam line is tuned to accept “surface” muons originating from pions

decaying at rest near the surface of target E. Such muons have 29.8 MeV/c of momentum by

virtue of being produced by pions at rest and travel through a sufficiently small remaining

portion of target E that they exit with a small momentum spread (σ ∼ 0.85%). Figure 4.2

lays out the πE5 beam line components. The measured flux of pions and muons in πE5 at

the end of the last bending magnet (AST) is presented in Figure 4.3.
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Figure 4.2: A diagram of the πE5 beamline components.
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Figure 4.3: Measured flux of beam content.
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4.1.3 Beam Transport System

Figure 4.4 illustrates the remaining beam path. The outgoing πE5 muon beam is directed

through two sets of quadrupole triplet magnets that sandwich a Wien filter. The Wien filter

applies perpendicular electric and magnetic fields optimized to allow muon passage while

deflecting the paths of contaminant positrons. A spatial separation between the positrons

and muons of 7.5 times the RMS dispersion of the beam profile is achieved by directing the

positrons into a collimator system that functions as a beam-dump. Next, the muon beam is

focused by a superconducting beam transport solenoid magnet (BTS) where it encounters

a 200-300 µm thick Mylar degrader to slow it down before delivering it to the experiment.

The final spot size on the stopping target is σx ≈ σy ≈ 1 cm.

Figure 4.4: An illustration of the beam transport system.

4.2 Coordinate System

The MEG detector setup consists principally of a magnetic spectrometer and an electromag-

netic calorimeter located near a stopping target. This setup is outlined in Figure 4.5. The

positive z-axis is defined to lie parallel to the beam direction, pointing downstream. Inside

the magnet bore, the stopping target is placed in the beam. Nominally, the origin of the
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global coordinate system coincides with the center of the target and of the magnet. The

positive y-axis points upward and the x-axis is oriented in the manner of a right-handed

coordinate system. The calorimeter is confined to the half-volume x < 0. When we refer

to particle emission angles, θ is the zenith angle made with respect to the positive z-axis

(0 ≤ θ < π), and φ is the azimuthal angle made in the x-y plane with respect to the positive

x-axis (−π ≤ φ < π).

Figure 4.5: A sketch of the experimental layout for MEG.

4.3 Stopping Target

A 205 µm thick, elliptical, polyethylene target, of density 0.922 g/cm3, is placed inside

the magnetic spectrometer. A Rohacell [44] frame, of density 0.0513 g/cm3, supports the

polyethylene film. Figure 4.6 shows the standalone target and frame structure, while figure

4.7 represents the target in its fully mounted state. The target material and thickness are

optimized to minimize scattering of positrons in the target and annihilation in flight. Since

the muons are fully polarized after pion decay, it is also chosen for its depolarizing character-

istics. Several holes, with 5 mm radii, are placed in the target to check its positioning using
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reconstructed positron tracks projected back to their decay vertex. The target plane is not

perpendicular to the z-axis, but instead makes an angle of 20◦ with it to increase muon stop-

ping power without significantly increasing the amount of target material typically traversed

by exiting positrons. Knowledge of the position and orientation of the target is crucial for

determining the positron angles. A displacement of the target in the direction perpendicular

to its plane of 500 µm, for example, causes an error in the inferred φe of about 3.6 mrad.

Figure 4.6: A photograph of the muon stop-
ping target labeled with dimensions.

Figure 4.7: A view of the mounted target,
looking upstream.

4.4 Magnetic Spectrometer

Positrons are detected and measured in a spectrometer consisting of several components

fully immersed in a solenoid magnetic field graded along the beam axis. The trajectories

are traced by a discrete set of position measurements in a drift chamber, which is used to

infer the particle momentum, the decay vertex, and the path length to the timing counter.

Two sets of plastic scintillating bars, the timing counters, are placed at the upstream and

downstream ends within the magnetic field to measure the positron time of impact after

exiting the drift chamber. Together, these measurements fully characterize the positron

kinematics.
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4.4.1 COBRA Magnet

The magnetic field is graded along the beam axis to fall in magnitude as |z| increases. The

grading is tuned to compensate the dependence of transverse momentum on the zenith angle

and keep the bending radius approximately independent of it. From this property of the

field, the name of the magnet (COnstant Bending RAdius or COBRA) originates. This

enables the placement of the drift chambers at large radius, where positrons near the signal

momentum travel, and where the rate is low. It also limits the number of turns made in the

drift chamber to typically one or two, regardless of the emission angle. Figure 4.8 summarizes

these highly advantageous features pictorially. Figure 4.9 compares the positron rate as a

function of radius for a uniform and graded field.

The graded axial magnetic field is set up by a series of superconducting coils of current

(360 A), pictured in Figure 4.10. The central coil, centered at z = 0, is placed between

two gradient coils of larger radius, which themselves are located between two end coils of

even larger radius. A pair of normal conducting compensation coils reduces the field near

the calorimeter. This structure is mapped out in Figure 4.11. The resulting magnetic field

ranges from 1.27 T at z = 0 to 0.49 T at |z| = 1.25 m, as shown in Figure 4.12.

Since the target is placed within the bore of the magnet, photons must travel through its

structure before reaching the calorimeter. For this reason, the wall of the magnet is made

very thin, and the total thickness of the superconducting coil, support structure, and cryostat

amounts to 0.197X0.

Although the calorimeter is placed outside the magnetic solenoid, the fringe field still presents

concerns regarding the performance of PMTs in a magnetic field. The magnetic force on the

electrons in a PMT moving from dynode to dynode is most severe when the PMT orientation

sets the path of internally moving electrons perpendicular to the direction of the magnetic

field, as seen in Figure 4.13. To counteract this, compensation coils are installed in the
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(a) In a uniform axial magnetic field,
positrons emitted nearly perpendicular to the
beam axis make numerous turns in the drift
chamber complicating the pattern recogni-
tion and increasing the rate in the drift cham-
bers.

(b) In a graded magnetic field, the bending
radius of the positron grows with |z|, which
quickly sweeps it out of the chambers before
making many turns.

(c) In a uniform axial magnetic field, the
positron bending radius is a linear function
of its transverse momentum.

(d) In a graded magnetic field, the bending
radius depends only on the magnitude of
its momentum. This enables a precise ra-
dial selection window for high momentum
tracks.

Figure 4.8: A comparison of uniform magnetic field attributes with those of a graded mag-
netic field.
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Figure 4.10: A photograph of the magnet.
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Figure 4.11: A schematic of the magnet design.
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Figure 4.12: The magnetic field strength within the spectrometer as a function of |z|.
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magnet to cancel the magnetic field in the calorimeter region down to the level of 50 Gauss.

Figure 4.14 charts the magnetic field contours achieved throughout the detector as a result

of the compensation coils.

Figure 4.13: PMT gain versus magnetic field strength for different orientations.

4.4.2 Drift Chamber

The drift chamber system is made up of 16 modules, nominally arranged to lie at constant φ

and spaced from one another by 10.5◦, populating the half-volume defined by y < 0. Figure

4.15 presents a photograph of the fully installed drift chamber system.

The drift chamber acceptance is designed to extend in zenith emission angle for | cos θe| <

0.35 and in azimuth to lie in the region |φe| < 60◦. Positrons emitted nearly perpendicular

to the beam axis (| cos θe| < 0.08), however, make many turns in the spectrometer and the

57



Figure 4.14: Magnetic field contours throughout the detector.
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Figure 4.15: A photograph of the 16 drift chamber modules mounted on the support struc-
ture.
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reconstruction efficiency degrades. The longitudinal extent ranges from 40 cm in length

for the shortest wire at the largest radius to 86 cm in length for the longest wire at the

smallest radius. Radially, the acceptance of a drift chamber module covers 8.55 cm from

approximately R=20 cm to R=28.55 cm. Maximum efficiency is expected to occur near

the signal momentum, 52.8 MeV/c, but non-zero reconstruction probability reaches down to

roughly 40 MeV/c.

As viewed from the side (see Figure 4.16), the drift chamber modules are trapezoids of

stretched wires increasing in length as one nears the innermost radius. This shape is man-

dated by the desire to place the timing counters as close to the chambers as possible. Figure

4.17 presents a diagram of a module as viewed from a line of sight parallel to the wires. As

shown in the figure, a single module is made up of two planes, each containing nine drift

cells. To help resolve the left/right ambiguity, the two planes are staggered from one another

by half a cell. The physical volume of a plane is defined by two parallel foils, composed of

12.5 µm thick polyimide with a 250 nm thick aluminum deposition. The outermost planes

are called hoods and the innermost planes are called cathodes; they are sometimes referred

to as pads. This design brings the average material crossed per module to 2.5 × 10−4X0.

At the center of each drift cell, a NiCr anode (or sense) wire, 25 µm in diameter, is held

at a nominal operating potential of 1850 V. Field shaping potential wires are placed on the

side(s) of a drift cell. A carbon frame (see Figure 4.18), equipped with electronics (PCBs

made of G-10), surrounds the module on three of the remaining sides and is left open on the

side closest to the target.

Pulses are read out at both the upstream and downstream ends of the wire. A Vernier

pattern is etched into the cathode and hood foils, surrounding the drift cell, as illustrated

in Figure 4.19. The charge deposited on the anode wire in turn induces charge on the

pads. Each of the zig-zag patterns on a pad, which are separated by a gap, is read out

electronically. This results in four pad signals per cell: two from the cathode and two from
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the hood. The pattern is periodic every 5 cm, and the phases of the patterns are shifted

from one another as shown in Figure 4.20. A description of how the anode and pad signals

are used for reconstruction is given in section 5.2.1.

Each drift chamber module is filled with a mixture of equal parts helium (He2) and ethane

(C2H6) by volume, which provides a substantial amount of ionization (about 22.6 sites/cm

for a minimum ionizing particle[45]) for a minimal amount of additional scattering. To

equalize the pressure outside the modules with that inside the modules, the surrounding

volume within the magnetic spectrometer is filled with pure helium. This choice minimizes

scattering and energy loss for the particles coming off the target. This is controlled by a

gas system consisting of several pumps, sensors, and controllers hooked up to gas reserve

tanks. Since it is less damaging to leak gas from the modules into the magnet volume than

vice-versa, the pressure inside the drift chamber modules is held at 1.2 Pa above the ambient

pressure inside the magnet volume in case of leaks. To avoid fluctuations in the shape of the

outer hood foils, this pressure difference must be maintained to within 1 Pa; in reality, it is

regulated to better than 0.02 Pa.

Given the module geometry, its electromagnetic boundary conditions, and the helium-ethane

gas pervading it, a map of the field lines within a cell and the resulting arrival times are simu-

lated by the GARFIELD [46] program. Figure 4.21 displays an example Garfield simulation.

Garfield is also used to estimate the magnitude of gravitational wire sag and electromagnetic

deflection, which are both found to be negligible compared to the wire thickness.

4.4.3 Timing Counter

The timing counters are placed at the upstream and downstream ends on both sides of

the drift chamber, within the magnetic field, as shown in Figure 4.5. Each timing counter

comprises two layers of scintillating material, approximately 80 cm long, populating the
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Figure 4.16: A single drift chamber module.

Figure 4.17: A cross-section of a drift chamber module, looking down the wires. The length
measurements are in units of mm.

Figure 4.18: A picture of the three-sided frame.
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Figure 4.19: An illustration of the technique for measuring Z from pad signals.

Figure 4.20: An schematic of the pad orientations.
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Figure 4.21: A map of drift lines (red) and isochrones (green) within a cell for a fixed
magnetic field strength of Bz=0.9 T.
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regions 29 cm < |z| < 109 cm and covering about 160◦ in φ.

Nearest to the origin, at R=29 cm, are 128 scintillating plastic fibers, made of 6 × 6 mm2

SAINT-GOBAIN BCF-20 [47], arranged at constant z. These are visible as the top layer in

Figure 4.22. Both ends of a fiber are coupled to a 5× 5 mm2 silicon avalanche photo-diode

(APD), specifically a HAMAMATSU R5924[48]. APDs have the advantage of being small

and easy to align with the tightly spaced fibers, as well as being insensitive to magnetic fields,

unlike conventional PMTs. The fiber system is intended to provide a precise measurement

of the positron impact location in Z for use in the trigger as well as the analysis. Due to

technical problems with the APDs, the fibers were not used for either triggering or analysis

in the 2009 data.

Behind the fibers, at R=32 cm, 15 scintillating plastic bars, made of 4×4×80 cm3 BICRON

BC-404 [47], are arranged at constant φ in 10.5◦ intervals. These are visible beneath the

fibers in Figure 4.22. Each end of a bar is read out by a 2-inch fine-mesh HAMAMATSU

PMT S8664-55 [48], slanted with respect to the z-axis by 10◦ to reduce the effects of the

magnetic field on their performance. In order to avoid damaging helium penetration into

the PMTs, each of the two timing counter assemblies is contained in a nitrogen filled bag.

The bars provide the impact location in φ and are also used to infer Z from the ratio of the

light collected at the two ends. They are, in fact, the only source of information on impact

time and location in 2009 data. The use of the timing counter bars for event reconstruction

is discussed in section 5.3.

4.5 Liquid Xenon Calorimeter

The calorimeter, shown in Figure 4.23, is a portion of a cylindrical shell, within the region

x < 0, whose inner surface is placed flush with the outer surface of the cylindrical magnet
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Figure 4.22: A photograph of a timing counter assembly before installation.
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wall. Its volume is enclosed by six faces, labeled in Figure 4.24. Aluminum honeycomb

panels, covered with carbon fiber plates, form a 0.075X0-thick photon entrance window at

the inner face. 900 liters of liquid xenon fill the interior of the detector as the scintillation

medium, and a total of 846 PMTs are distributed on the six faces to collect the scintillation

light; the ionizaton is not measured. PMT placement is densest on the inner face with

about 35% photocathode coverage because it is the closest face to the bulk of the energy

deposition, the least affected by Rayleigh scattering and absoprtion, and therefore the most

important for locating the shower. The acceptance is matched to that of the drift chamber

for back-to-back pairs of positrons and photons assuming the decay occurs at the origin,

hence the solid angle coverage is a modest 11%, while the sensitive depth extends to 38.5

cm (14X0), preventing energy from leaking out of the outer face.

A variety of processes influence the development of an electromagnetic shower: pair pro-

duction, bremsstrahlung, photo-electric absorption, scattering, and pair annihilation. For

photon energies near the signal energy (52.8 MeV), the dominant interaction is pair pro-

duction. Due to the short radiation length of liquid xenon (2.77 cm), the first interaction

occurs 3.56 cm from the inner face on average. As estimated from Monte Carlo simulation,

the mean longitudinal extent of the shower profile is approximately 5 cm and the mean

transverse spread is about 2 cm.

Two types of scintillation processes are possible. In one case, the reaction begins with an

excited xenon atom and gives rise to a scintillation photon with a decay time of either 4.2

ns or 22 ns depending on how it proceeds [49]. In the other case, the reaction begins with

an ionized xenon atom and produces scintillation light with a decay time of 45 ns [49].

Either way, the achievable time resolution is very good, and the emitted photon cannot

be reabsorbed by xenon. One disadvantage stems from the scintillation light falling in the

vacuum ultraviolet regime (around 178 nm) [50], which can be easily absorbed by water or

oxygen. For this reason, the xenon is purified before data acquisition by pumping the liquid
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Figure 4.23: A photograph of the calorimeter before installation.
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Figure 4.24: A diagram of the calorimeter labeling the six faces.

through filters, and can be purified during data acquisition by filtering evaporated xenon.

A special PMT (R9869), sensitive to this light and able to function at cold temperatures,

was developed by HAMAMATSU PHOTONICS specifically for MEG. Another difficulty is

the additional machinery required to keep the xenon liquid (at around 165 K). The xenon is

cooled by a 200 W pulse tube refrigerator mounted on top of the detector.

To help calibrate PMT gains, a dedicated system of remote-controlled, blue light-emitting

diodes (LED) are installed within the active volume at six positions on both the upstream

and downstream faces. Each LED is attenuated by a filter made of an aluminum sheet with

holes so that they can be operated at a high voltage optimal for stable performance. During

calibration, uniform illumination over each photocathode is achieved by flashing 10 LEDs

simultaneously. The setup is pictured in Figure 4.25.

For calibrating the PMT quantum efficiencies, radioactive sources are placed at known po-
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Figure 4.25: A photograph of the mounted LED and alpha sources. The orange circle
indicates a LED and the yellow arrow indicates an alpha source wire.
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sitions throughout the calorimeter and the resulting scintillation light is used. Five 100

µm-diameter, tungsten wires with five 241Am sources each are mounted as shown macro-

scopically in Figure 4.25 and microscopically in Figure 4.26. These sources emit α particles

at 5.485 MeV (84.5%) and 5.443 MeV (13%), which have a sufficiently short range in liquid

xenon (about 40 µm) that they can be regarded as point-like interactions.

Figure 4.26: A close up of an 241Am source on a wire.

The photon reconstruction is described in section 5.1.

4.6 Trigger and Data Acquisition

When the experiment is live, thousands of signals from the detectors are routed to waveform

digitizers to store the waveforms, sent to a trigger system that decides if the event is of

interest or not, and permanently logged in software file format if the trigger conditions are

satisfied. The essential components of this system are shown in Figure 4.27.

PMT signals from the calorimeter are sent to active splitters through coaxial cables. There

they are split into three outputs, all of which are inverted into a positive pulse to lie in the

dynamic range of the waveform digitizers. One is a wide-band (1.9 GHz) fully differential

output that is delivered to a waveform digitizer by a 2 m-long high-density twisted-pair
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cable. The other outputs are a 320 MHz-bandwidth differential output, which is used for

PMTs on the inner face, and a four-to-one sum output, which is used for other PMTs; both

are fed to the trigger by a 2 m-long lower-density cable.

Signals from the PMTs associated with the timing counter bars are sent to a passive splitter

where they are divided into three outputs in an 8:1:1 ratio. The largest output is passed

through a double threshold discriminator (DTD) to distinguish real positron hits from spu-

rious ones, yielding 50 ns-wide standard NIM pulses that go to waveform digitizers. One of

the smaller outputs exiting the passive splitter is sent to an active splitter where one output

is coupled to the waveform digitizer and the other is coupled to the trigger system. The

remaining passive splitter output is used for online current monitoring.

The anode wire signals from the drift chamber are split in the ratio 9:1 by a passive splitter.

The largest output goes to the waveform digitizer while the other is amplified, summed over

several wires, and then used in the trigger. All signals induced on the pads are sent to the

waveform digitizer.

4.6.1 Data Acquisition with MIDAS

Data acquisition is controlled by the MIDAS [51] framework. The full output of the experi-

ment is divided into nine crates, each controlled by a Linux PC. Four of them are connected

to the trigger system, and five are connected to the waveform digitizers. MIDAS controls

all of the crates, an online database of parameters for data-taking and triggering, an alarm

system, a live monitoring system, and a system for logging events to disk.

Several techniques are applied to reduce the data size. Only drift chamber waveforms con-

sistent with a pulse above the noise on an anode are recorded, and the waveforms are

then re-binned outside the region of interest for coarser granularity. The timing counter
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Figure 4.27: A visual representation of the data acquisition system.

waveforms are similarly zero-suppressed and re-binned. The calorimeter waveforms are not

zero-suppressed, but they are also re-binned outside the region of interest. This results in

a total reduction in data size by a factor of greater than 3. In total, 93 TB of data was

collected during 2009.

4.6.2 Waveform Digitization with DRS

All waveform digitization in the MEG experiment is performed by a PSI-designed switched

capacitor array named the DRS (Domino Ring Sampler). A single DRS chip contains eight

sampling channels, a channel to accept trigger signals, and a channel to accept a clock signal.

Each of the eight sampling channels can store waveforms in a ring of 1024 capacitors. During

operation, the DRS is continuously storing information in the 1024 sampling cells at a fixed

frequency until a trigger signal causes it to stop and the sampled waveform is read out by

a shift register and digitized by a commercial FADC (fast analog-to-digital converter). This
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process is summarized in Figure 4.28.

Throughout the 2009 run, all detectors used version DRS4 [52] except the timing counter,

which used version DRS3 [53]. The calorimeter and timing counter waveforms were sampled

at 1.6 GHz for fine granularity in discerning pileup, while the drift chamber waveforms were

sampled at 0.8 GHz because the drift processes happen on a slower time scale with typical

rise times of ∼10 ns.

Figure 4.28: A diagram representing the technique for digitizing waveforms.

4.6.3 Trigger System

The trigger system consists of flash analog to digital converters (FADC)[54], which digitize

the waveforms received from the detectors, and field programmable gate arrays (FPGA)[55],

which analyze the digitized waveforms. The chain of command is displayed in Figure 4.29.

At the first stage of triggering, Type 1 boards digitize analog input signals with FADCs
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Figure 4.29: A pictorial layout of the trigger system.

(AD9218 [54]) at 100 MHz, carry out some fast reconstruction algorithms on FPGAs (Xilinx

Virtex-II Pro [55]), and pass the results onward. The remaining triggering stages make use

of Type 2 boards. The second triggering stage figures out the state of each detector, and, at

the third and final stage, a decision is made. If an event satisfies the trigger, then all of the

waveform digitizers are stopped and read out.

A master board contains a 19.44 MHz reference square pulse generator (SaRonix SEL3935

[56]) and accepts decision commands from the third stage of the trigger system. The clock

signals are distributed to all boards of the trigger and digitizer systems to guarantee that

they are temporally synchronized.

The MEG event trigger requires a photon energy above threshold, and a space-time match

between the positron and photon. The online algorithm estimates the photon energy by a

global sum of calorimeter PMT waveforms, which achieves an 8% FWHM resolution, and

the threshold is set to 44 MeV. Both the positron and photon emission times are taken from
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a linear interpolation of PMT pulse leading edges; neither is corrected for flight time from

the target. The resolution of the positron photon time difference is 3.3 ns (σ), and the MEG

trigger requires this to be within 10 ns of zero. To check for a direction match, the photon

conversion position is given by the most illuminated inner face PMT and the positron z

impact location is taken from the charge ratio of PMTs in the hit bar. The positron path

from the target to the timing counter is complicated due to the non-trivial magnetic field,

thus, for a fast online determination of the positron emission angle, a lookup-table is created

from a Monto Carlo simulation of the correlation between target emission angle and timing

counter impact location for signal positrons. The trigger rate for events satisfying these

conditions during the 2009 data taking period was 9 Hz.

A variety of different triggers are taken with high prescale factors along with the MEG data

for purposes such as normalization and detector efficiency measurements.

4.7 Calibration Hardware

Additional apparatus is used to calibrate the photon energy scale; measure the photon energy,

time, and position resolutions; and calibrate the calorimeter-timing counter relative timing.

Back-to-back photon pairs from π0 decay, as described in section 4.7.1, are used to calibrate

the photon energy scale and measure the photon energy, time, and position resolutions. The

photon energy scale is monitored during data taking using monochromatic photons from

proton reactions with Lithium and Boron, as described in section 4.7.2, and the calorimeter-

timing counter relative timing is calibrated with back-to-back photons from one of those

reactions.
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4.7.1 Charge Exchange Apparatus

The reconstruction algorithm eventually calculates the number of scintillation photons ob-

served in the calorimeter for a given event. This light level is converted into a photon energy

using a conversion factor determined from calibration. A monochromatic source of photons

near the signal energy is used to calibrate the absolute energy scale. The monochromatic

source is obtained by using the reaction π−p → π0n at rest followed by π0 → γγ decay

and selecting events where the two photons are in anti-parallel directions. As illustrated in

Figure 4.30, the π0 momentum is fixed at 28 MeV/c. When the photons are anti-parallel

along the π0 flight direction, they have energies of 54.9 and 82.9 MeV to conserve energy

and momentum. The 55 MeV photons are close to the signal energy of 52.8 MeV. Dalitz

decays, π0 → e+e−γ, are also recorded for other uses. Additionally, the radiative capture

reaction, π−p→ γn, can occur giving an 8.9 MeV neutron and a 129.4 MeV photon. Since

it takes about a week to prepare the setup for this calibration, described below, it was only

performed once, just before the 2009 data taking.

ψ
π 0

(E, p)

k1= (k10,k1)

k2= (k20,k2)

Figure 4.30: Kinematics of the π0 → γγ decay.

Beam and Target Setup The πE5 channel provides a 70.5 MeV/c π− beam, whose

momentum is selected as that most effective for filtering beam contaminants. During charge

exchange data taking, the traditional muon target is replaced with a cylindrical target filled

with about 150 cc of liquid hydrogen, pictured in Figure 4.31. It is 50 mm in diameter, 75
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mm in length, and has a 135 µm thick Mylar film at the beam entrance. The charged pions

come to rest in the target and the outgoing neutrons and neutral pions from the charge

exchange reaction are emitted back-to-back, each with 28 MeV/c of momentum.

Figure 4.31: A photograph of the liquid hydrogen target used with the π− beam.

NaI Detector To select events with back-to-back photons, a miniature calorimeter, pic-

tured in Figure 4.32a, is placed opposite the liquid xenon calorimeter. For the energy mea-

surement, nine NaI crystals (62.5×62.5×300.5 mm3) comprise the scintillation medium and

each is coupled to an APD (10× 10 mm2, HAMAMATSU S8664-1010 [48]). To measure the

time, a 5 mm-thick lead plate and two plastic scintillators are placed in front of the central

NaI crystal. The e+e− pairs produced in the lead plate are collected in the two plastic scin-

tillating counters (70× 70× 7 mm3), each coupled to two fine-mesh PMTs (HAMAMATSU,

H6152-70 [48]). The entire assembly is mounted on a movable platform, pictured in Fig-

ure 4.32b, which allows for full coverage of the liquid xenon calorimeter acceptance when

selecting back-to-back pairs.

Details on the use of the charge exchange data for measuring photon energy, time, and
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position resolutions are presented in section 8.1.1.

(a) The NaI calorimeter, consisting of
a lead plate, plastic scintillating bars,
and NaI crystals.

(b) The movable platform for po-
sitioning the NaI calorimeter.

Figure 4.32: The setup for the external NaI calorimeter.

4.7.2 Cockcroft-Walton Accelerator

A Cockcroft-Walton proton accelerator[57], pictured in Figure 4.33, is used to provide pho-

tons at several different fixed energies to check the calorimeter linearity. Photon pairs are

also produced and used to calibrate the relative time offset between the calorimeter and

the timing counter. One reaction, p + 7
3Li → 8

4Be + γ, produces a 17.6 MeV photon and

has a high cross-section at low proton energies (resonant at 440 keV)[58]. Another reaction,

p + 11
5 B → 12

6 C + γ, which is resonant at 163 keV, produces a 16.1 MeV photon when the

12
6 C is in its ground state, or an 11.7 MeV photon when the 12

6 C is in its first excited state,

as well as a simultaneous 4.44 MeV photon from the transition to the ground state.

During calibration runs, the Cockcroft-Walton supplies a 1012 Hz proton beam to a lithium

tetraborate target (Li2B4O7) target, pictured in Figure 4.34a, catalyzing both of the above
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reactions with a single target. A quick exchange between the muon stopping target and

the lithium tetraborate target, requiring only ∼20 minutes, is performed remotely with a

bellows system, pictured in Figure 4.34b. Daily Cockcroft-Walton calibration runs are used

to monitor the calorimeter light yield throughout the MEG data taking.

Figure 4.33: A photograph of the Cockcroft-Walton accelerator.
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(a) A photograph of the Li2B4O7 target for use with the Cockcroft-Walton proton acceler-
ator.

(b) The bellows system for insertion and extraction of the Li2B4O7 target.

Figure 4.34: Components of the target setup for calibration with the Cockcroft-Walton.
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Chapter 5

Event Reconstruction

An event recorded by the experiment consists of raw detector waveforms that are used

to reconstruct the kinematics of the detected particles. Photons are detected in the liquid

xenon calorimeter (XEC), and positrons are detected in the drift chamber (DCH) and timing

counter (TIC). This chapter describes the algorithms used to reconstruct the energy, time,

and angle of the photon and positron.

5.1 XEC

Photons entering the calorimeter deposit their energy inside its volume, giving off charac-

teristic patterns of scintillation photons. The ensuing series of waveforms measured by the

PMTs are the exclusive source of information on the photon energy, time, and position. A

set of software algorithms first reconstructs the number of detected scintillation photons and

their arrival time in each PMT, and from these PMT measurements infers the energy, time,

and first conversion position of the detected photon.
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5.1.1 Waveform Analysis

The analysis begins by finding the leading edge time and charge of each PMT waveform.

The leading edge times of the raw PMT waveforms are estimated by a constant fraction

discriminator, namely, the time at which the waveform reaches 30% of its full pulse height. To

reduce the effects of waveform noise and stochastic pulse shape fluctations, the pulse height is

measured indirectly from the charge by assuming a linear scaling relationship between charge

and pulse height, which is inferred from a template waveform shape that is constructed from

the accumulation of many events.

The charge integration proceeds by first averaging the voltages in a region before the pulse

on an event-by-event, and PMT-by-PMT basis to form a constant estimator of the baseline

during the pulse. A high-pass filter is constructed by subtracting a moving average of the

waveform (itself a low-pass filtered waveform) from the original waveform. The number of

bins in the moving average, 89, is tuned to achieve a cut-off frequency of approximately 11

MHz. Figure 5.1 shows an example of a raw and high-pass filtered waveform. A common

charge integration region is applied to all PMTs in an event. The end of the integration

region is determined by the zero-crossing time of the sum of all PMT waveforms in the

event. The length of the integration range is 48 ns, which acts as a low-pass filter with a 21

MHz cut-off frequency.

The energy estimator is an appropriately weighted sum of all PMT charges in the event. The

performance of this estimator is limited by PMTs receiving signals large enough to saturate

the electronics. With about 15% of photon interactions occuring within 1 cm of the front

face, the probability for an inner face PMT to saturate is significant. Figure 5.2 displays a

saturated waveform. An improved estimator of the charge in these situations is actualized

through a time over threshold technique. The time span during which the waveform is above

some threshold, 150 mV, is related to the expected charge based on the assumption of the
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(a) The red line shows a raw PMT waveform. The grey line is a low-pass filtered
version of the waveform, constructed from a moving average. The black line is
the template waveform with its amplitude scaled by the measured charge and its
leading edge aligned with the measured one.

(b) A high-pass filtered version of the same waveform.

Figure 5.1: Various representations of a PMT waveform from data.
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fixed template waveform shape discussed above. Figure 5.3 shows this relation. In cases of

PMT saturation, the charge is calculated directly from the time over threshold using this

relation.
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Figure 5.2: An example of a saturated PMT waveform. The time over threshold is pointed
out by the black arrow.

Figure 5.3: The relationship between expected charge and time over threshold based on the
template waveform.

5.1.2 Photon Reconstruction

The number of photoelectrons (Npe,i) and scintillation photons (Npho,i) detected by the i’th

PMT are inferred from its measured charge (Qi), its electronic gain (Gi), the quantum
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efficiency of its photocathode (QEi), and the elementary charge, e:

Npe,i =
Qi

(e ·Gi)
(5.1)

Npho,i =
Npe,i

QEi
. (5.2)

Sections 6.3.1 and 6.3.2 discuss the determination of the PMT gains (Gi) and quantum

efficiencies (QEi), respectively. With this information, the analysis proceeds to reconstruct

the shower position, time, and energy.

Position To reconstruct its position, the shower is first treated as a point-like interac-

tion that emits scintillation photons isotropically. At each one of a series of test locations

(xγ, yγ, zγ), the solid angle subtended by the i’th PMT (Ωi(xγ, yγ, zγ)) is computed numeri-

cally. Both the photon position (xγ, yγ, zγ) and a factor (c) are varied to minimize:

χ2
pos =

∑

i

Npho,i − c× Ωi(xγ, yγ, zγ)

σpho,i(Npho,i)
. (5.3)

The measurement uncertainty is that due to Poisson fluctuations in the number of observed

photoelectrons:

σpho,i(Npho,i) =
σpe,i(Npe,i)

QEi
=

√
Npe,i

QEi
=

√
Npho,i

QEi
. (5.4)

The position fit is actually performed twice to smooth the effects of non-point like shower

development. In each case, only inner face PMTs are used since they are the closest to

the bulk of the energy deposition and thus the least sensitive to Rayleigh scattering and

absorption. The starting point is a charge-weighted mean using PMTs around the PMT

with maximum signal. In the first fit, all PMTs whose center lies within a 3.5-PMT radius
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of the starting point are used, typically 45. In the final fit, all PMTs whose center lies within

a 2-PMT radius around the position from the first fit are used, typically 15. The final fitted

position can be taken into the (u,v,w) coordinate system by the transformation equations:

u = z (5.5)

v = r0 arctan

(−y
x

)
(5.6)

w =
√
x2 + y2 − r0, (5.7)

where r0 = 67.85 cm, the radius of the inner face.

u is just the usual coordinate along the beam axis, v is a coordinate along the circumference

of the inner face, and w measures the radial depth inside the calorimeter volume.

Based on MC studies, no bias is observed in v, while |u| and w tend to preferentially recon-

struct toward larger values than the true position. Consequently, MC deduced corrections

are applied to u and w. Additional corrections for fluctuations in the shape of the shower are

administered, predicated on the information contained in the difference of the two position

fit results.

A discussion of the photon position resolution is given in section 8.1.1.

Energy The algorithm for photon energy reconstruction is based on the principle that the

photocathode coverage is uniform in a given face and approximately independent of shower

position. In that case, the deposited photon energy is proportional to the weighted sum of

all detected scintillation photons:

Nsum =
∑

i

wi ×Npho,i. (5.8)
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wi is the inverse photocathode coverage of the i’th PMT. This approach works well when the

first interaction occurs at a significant depth, w > 2− 3 cm. For shallower conversions, the

solid angle subtended by PMTs on the inner face varies strongly with shower position and

the assumption of uniform coverage on the inner face is violated. Monochromatic 55 MeV

photons from π0 decay are used to study the dependence of Nsum on the solid angle subtended

by the inner face PMT with maximum signal, Ωin,max, for shallow depth (w < 3 cm). The

results of this study are used to correct the shower position dependence of Nsum for shallow

events. After the correction for solid angle dependence, a residual position dependence of

energy is observed due to finite absorption length and differences in the effective coverage

of PMTs with conversion position. A position-dependent correction factor, F (u, v, w), is

estimated from the 17.6 MeV photon energy peaks in the p + Li data. Finally, the photon

energy is given by:

Eγ = αF (u, v, w)Nsum (5.9)

The proportionality constant α is obtained from 55 MeV calibration photons. The degree to

which α is constant with energy is verified with several monochromatic sources of photons

as shown in figure 5.4.

A discussion of the photon energy resolution is given in section 8.1.1.

Time Each PMT gives an independent measurement of the first interaction time:

tinteraction,i = tPMT,i −∆tdelay,i −∆toffset,i. (5.10)

The first term, tPMT,i, is the leading edge time of the i’th PMT waveform. Event dependent

time delays are encoded in the second term, and constant electronic delays are represented

by the last term.
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Figure 5.4: The 5.5 MeV data point is from the in-situ α sources; the 4.4 MeV, 11.7 MeV,
and 17.6 MeV data points come from p + Li and p + B data; the 55 MeV and 83 MeV
data points come from charge exchange data, and the 129 MeV line is from the radiative π−

capture reaction. The red line is a fit to a line with a floating y-intercept. The blue line is
a fit to a line with the y-intercept fixed to zero.
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The event dependent piece is composed of three parts:

∆tdelay = ∆tdirect(d, veff ) + ∆tscatter(η) + ∆twalk(Npe). (5.11)

Here, the first term encapsulates the contribution from scintillation photons propagating

directly from the source to the PMT for a finite amount of time. It depends on the distance

between source and detector, d, and the speed of scintillation photons in liquid xenon, veff .

Photons reaching a PMT after reflection off walls or scattering in the xenon comprise the

second term. This delay depends on the incident angle of incoming photons with respect to

the normal to the photocathode (η); this part becomes severe when the angle is far from

zero. The last term describes time walk effects in getting the leading edge of the PMT

waveform. This is a function of the pulse height, or equivalently, the number of observed

photoelectrons, Npe. These corrections are determined phenomenologically as discussed in

section 6.3.3.

The best estimate of the first interaction time, tXEC , is then the one that minimizes:

χ2
time =

∑

i

(tinteraction,i − tXEC)2

σt,i(Npe,i)2
. (5.12)

The measurement uncertainty, σt,i(Npe,i), is the measured i’th PMT time resolution as a

function of Npe. The sum is over PMTs that satisfy Npe > 50, typically about 150 of them.

A discussion of the photon timing resolution is given in section 8.1.1.

Pileup Identification At the high muon rates necessary to achieve the desired sensitivity,

the calorimeter reconstruction is especially susceptible to events containing multiple photons.

Such pileup events are identified spatially by the light distribution in both the inner face

and outer face PMTs, and temporally by the distribution in the PMT leading edge times.
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One characteristic signature of pileup is an unusually large value of χ2
time divided by the

number of degrees of freedom, χ̂2
time, which occurs when different groups of PMTs observe

distinct interaction times of different photons. The threshold for pileup recognition is χ̂2
time >

3, as deduced from the distribution in that variable from data and MC (figure 5.5).

/NDF2c
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a.
u.

-410

-310

-210

-110

Figure 5.5: Distribution of χ̂2
time on data (dotted line) and signal MC without pileup (solid

line).

Another conspicuous indication of pileup is the presence of more than one peak in the PMTs

on either the inner or outer face. Secondary peaks are distinguished by locating PMTs with

Npho > 200 on either face at positions isolated from the primary peak.

Pileup events are recovered by first removing PMTs near the location of one photon when

reconstructing another photon in the same event. This introduces the complication that a

precise energy determination still requires a better estimator than Npho = 0 in the affected
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PMTs. For this purpose, a table of average PMT Npho yields for all possible shower positions

using a (1.55 × 1.55 × 1.55) cm grid is prepared using the 17.6 MeV photons from p + Li

data. The photon energy can then be estimated by replacing the outputs of those PMTs

with expected yields from the tables. Pileup events that are identified by χ̂2
time but not by

spatially separated peaks are not recovered.

5.2 DCH

A charged particle traversing the drift chamber produces primary ionization along its path

in the sensitive volume of, typically, one or two cell(s) per intercepted plane. The waveform

information associated with the resulting avalanches is used to calculate the particle’s posi-

tion at each plane and ultimately the particle momentum, a decay vertex and set of emission

angles from the projection to the target, a projected impact location at the timing counter,

and the overall path length of the trajectory. A chain of software algorithms first measure

the arrival time and charge on each wire and pad associated with the passage of a charged

particle through a cell, which are converted into spatial coordinates. The information from

each cell, referred to as a hit, is cross-checked with other hits on the same chamber, and

groups of hits consistent with coming from the same particle are then collected into clusters.

Patterns of clusters consistent with coming from the same particle are then collected into

tracks. Finally, a fit to the global track trajectory is made to estimate the track momentum,

the interception at the timing counter and target plane, and the total path length from the

target to the timing counter.
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5.2.1 Hit Reconstruction

This process begins by identifying hits. A hit refers to the information from a cell associated

with the passage of a single charged particle through its sensitive volume.

At every event and for each waveform, the algorithm forms a binned distribution of voltage

measurements (with 1 mV bin widths) from the region preceding the nominal location of

minimum drift time hits associated with triggering particles. A voltage baseline is computed

by averaging all entries in the binned voltage distribution within ± 5 mV of its mode,

additionally excluding 140 bins after any 12 consecutive bins exceeding the mode voltage by

5 mV or more. This procedure reduces contamination from early hits and electronic noise

fluctuations in determining the baseline. The baseline is subtracted from the waveform for

the remainder of the analysis.

Each anode waveform is then searched for hits in a region near the nominal triggered event

time. Such a window should be large enough to include maximum drift time hits and allow

for some jitter in the event time, yet small enough to avoid including excess hits with no

pertinence to the trigger (from 80 ns before to 350 ns after the nominal event time). To

reduce high-frequency noise sensitivity, a low-pass filter is implemented by means of a moving

average of voltages with a period of 5 bins. This is effective at removing noise above the

cutoff frequency of approximately 160 MHz. A candidate hit is generated upon detecting a

voltage maximum above 5 mV in both smoothed anode waveforms of the same wire. Figure

5.6 displays waveforms associated with a hit.

Proceeding backwards in time from the maximum voltage, the earliest bin time whose voltage

still exceeds three times the bin-to-bin pedestal RMS (σpedestal) defines the leading edge of

the pulse. The leading edge of the end with largest maximum amplitude is assigned as the

absolute hit arrival time in order to reduce errors due to pulse-height slewing and noise.

Once the Z coordinate of the hit is known, the hit time is corrected for propagation time
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Figure 5.6: The six waveforms associated with a hit. On the left are waveforms from up-
stream readouts, and on the right are waveforms from downstream readouts. The top two
are from the anode, the middle two are from the hood pads, and the bottom two are from
the cathode pads. The horizontal red lines are the calculated baselines, the vertical red lines
are the leading edge time, and the region enclosed by the two dashed blue lines is the allowed
window to search for hits.
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along the wire.

Two independent measures of the hit time are supplied by the two anode waveforms. Figure

5.7 presents the distribution in the difference of these measurements. Neglecting possible

correlations end-to-end, one may infer a resolution in the hit time of σt = 2.4√
2

= 1.7 ns in

the central Gaussian along with collateral non-Gaussian tails. While uncorrelated noise and

effects of the algorithm are present in this resolution estimate, it is not sensitive to electron

drift diffusion, random motion due to thermal energy of the drift electrons.
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Figure 5.7: Distribution of tend 0 − tend 1 for hits with both wire ends having a charge of at
least .3 mV*ns. The region |tend 0 − tend 1| < 6 ns is fit to a Gaussian.

For the purpose of charge integration, the pulse duration on each anode is defined by the

nearest 2σpedestal crossing on either side of the peak. The integration region is bounded from

below by a minimum of 15 ns (5 ns before the peak, 10 ns after it) and from above by a

maximum of 80 ns (24 ns before the peak, 56 ns after it). If either waveform contains fewer
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than 8 bins above 5 mV, it is no longer considered a hit candidate. The charge integration

region for all six waveforms is taken to be that of the anode signal with largest maximum

amplitude. A rectangular summation is employed to measure the charge contained within

the integration range:

Q =
∑

i∈integration range

Vi ·∆ti. (5.13)

Vi and ∆ti are respectively the voltage and time width of the i’th bin. When the start or

end time of the integration region falls inside a bin, only the fraction of the bin inside the

integration limit weights its voltage. Note that the charge is measured in units of voltage *

time.

There are several grounds upon which to base the optimization of the integration time.

At short integration times, timing errors such as systematically misaligned waveforms and

uncertainties in the DRS bin widths tend to produce large errors in Z. On the other hand, long

integration times enlarge the path length of the track that contributes to the measurement,

thus accepting ionization sites over a broader extent in Z. N contributing ionization sites

spanning a distance dZ will impart a component of dZ√
12N

to the Z resolution. Minimizing

the integration time also reduces problems from multiple hits not well separated in time.

Characteristics of the electronic noise spectrum present additional concerns. For a sharp

component in the frequency domain, integrating over a multiple of its period is preferred.

Random noise bestows an integration time dependent constituent to the Z resolution as well

and, in general, possesses bin-to-bin correlations. By rewriting the measured charge in Eq.
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5.13 in terms of the average voltage, V , and the total integration time, ∆T :

Q =

∑
i Vi ·∆ti∑
i ∆ti

∑

i

∆ti = V∆T, (5.14)

the problem of determining noise-related contributions to the resolution is reduced to mea-

suring noise related contributions to σV :

σQ = σV ∆T. (5.15)

Comparing the predicted baseline, VP , to the average baseline in the signal region, V M , in

events without a signal allows one to isolate the ingredient of σV due to pedestal fluctuations

as σ(VP−VM ). This is found to vary significantly over the numerous readout channels of the

detector. Consequently, the integration time dependence of the uncertainty in Z originating

from fluctuations in the baseline can be quantified through the following prescription:

• Measure σV from pedestal fluctuations for all pad channels in the drift chamber.

• Run the reconstruction on data, calculating σQ from Eq. 5.15 and the resulting error

in Z from Eq. 5.18, assuming no correlations from end to end, on an event-by-event

basis, for many hits.

• Repeat the above procedure for different values of the integration time limit, ∆T .

• For each value of the integration time, plot a single data point representing the resulting

error in Z averaged over all hits.

Figure 5.8 shows the dependence of the measured noise contribution to the Z resolution,

as well as the measured overall Z resolution itself, on the integration window. Both curves

acquire a minimum at 80 ns, which also matches the period of a known harmonic in the noise

spectrum at 12.5 MHz, hence the 80 ns limit on the integration window. The validity of
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the baseline time-independence assumption is similarly studied by comparing the precision

with which constant, linear, and quadratic time-dependence fits predict the pedestal in the

signal region in events with no signal. The conclusion is that a constant fit displays the best

performance.

Figure 5.8: The blue data points are direct measurements of the Z resolution while the red
data points are the calculated contributions of electric noise to the resolution at different
integration times. Since the calculations for the latter involve measuring pedestal fluctuations
for over a thousand channels, they are performed for a limited set of integration times.

Through anode charge division, one obtains a first estimate of the Z coordinate. Assuming

equal preamplifier input impedance, R, at each end of the anode, and a uniform resistance

per unit length, ρ, the Z coordinate along a wire of length L centered at the origin may be
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calculated from the anode charges as:

Zanode = (
L

2
+
R

ρ
)
Qanode
d −Qanode

u

Qanode
d +Qanode

u

. (5.16)

Qanode
u(d) is the measured anode charge at the upstream(downstream) end. The factor

Aanode ≡ Qanode
d −Qanode

u

Qanode
d +Qanode

u

(5.17)

is termed the anode charge asymmetry. From the measured pad charge asymmetries one

attains further precision on the Z coordinate:

Zpad =
λpad
2π

arctan(
Ahood

Acathode
) + δpad cycle(Zanode). (5.18)

λpad = 5 cm is the length of a pad cycle and δpad cycle(Zanode) describes the occupied pad

cycle; it is based solely on Zanode.

If one or more of the four pad channels associated with a cell is not functioning, the anode-

determined Z coordinate is used.

Figure 5.9 compares the two calculated Z coordinates: Zanode and Zpad. Because the uncer-

tainty of Zpad is an order of magnitude smaller than Zanode, the width of this distribution

yields a measure of the resolution on Zanode, about 8 mm. If the error on Zanode exceeds 2.5

cm, the hit will be placed on the wrong pad cycle. The shape of figure 5.9 suggests that this

will occasionally happen; however, this situation is partially corrected during clustering and

tracking.

After recording a hit, the algorithm zeros out the bins in both the smoothed and raw wave-

forms within the hit integration limits, and iterates the process to find additional hits until

either no peaks above threshold are encountered or no bins remain in the waveforms.
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Figure 5.9: Distribution of the difference in anode and pad determined Z coordinates of hits.
The region |Zanode − Zpad| < 1 cm is fit to a Gaussian.
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5.2.2 Cluster Reconstruction

Given that a chamber may contain many hits, it is a useful intermediate step toward tracking

to group collections of hits on a single chamber into clusters, if they are consistent with

coming from the same charged particle.

Because no trajectory information is available at this stage, the cluster formation require-

ments are intentionally kept very loose. The hits on a chamber are first assembled into

non-overlapping sets with no gap larger than 2 cells between hits on the same plane and no

more than 10 hits per set. Next, the clusters are trimmed of hits until no hit deviates from

the average Z coordinate by more than 3.75 mm. This threshold is established to retain hits

in a cluster whose pad cycle may have been measured incorrectly. Consider the benchmark

case of a two-hit cluster from a charged particle path in which one hit is reconstructed on

the pad cycle adjacent to its true location; the maximum possible difference in the hit Z

coordinates is 7.5 cm and each deviates from the average Z by 3.75 cm. The clusters are

further split into sub-clusters requiring no gap larger than 1 cell between hits. All hits not

associated with some cluster are checked for consistency with other clusters on the basis of

the above criteria iteratively until each chamber contains only two kinds of objects: clusters

of spatially correlated hits and disjunct hits that cannot be matched to any cluster. Both

objects are treated as independent clusters.

As a result of the loose requirement on the Z consistency of hits within a cluster, some

clusters may span a total distance along Z (>2.5 cm) beyond that expected for a set of hits

coming from primary ionization sites distributed only along a track’s comparatively short

path in the chamber. The algorithm assumes that this is due to an incorrect pad cycle

assignment of one or more hits in the cluster and attempts to correct the situation. Clusters

composed of either a single hit or more than four are not treated for this; the remaining

cases are handled as described below.
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A two-hit cluster with a Z span greater than 2.5 cm is compatible with either of its hits being

wrong by one pad cycle. Any such cluster is then replaced by two alternate clusters, each

created by shifting one of the two hits by one pad cycle, or 5 cm, toward the other. This

technique is based on the philosophy that, although the true manifestation of this cluster is

not known at this stage, the tracking algorithm will discern between the two possibilities by

choosing the one that best fits a track, if any.

A three-hit cluster with a Z span between 2.5 cm and 7.5 cm is subject to a similar procedure.

In this instance, the most outlying Z coordinate is translated by one pad cycle toward the Z

coordinates of the other two hits.

Four-hit clusters are presumed to fall into one of three categories. In the simplest case, all

four hits are consistent with correct pad cycle placement and nothing is done. In another

scenario, three hits are within one pad cycle of each other and one hit deviates by more than

2.5 cm from at least one of these three. Then there are two ways in which one hit could

have been mis-measured to produce such a scenario. Either the hit at smallest Z originated

one pad cycle toward positive Z away from its measured position, or the hit at largest Z

originated one pad cycle toward negative Z away from its measured position. The original

cluster is then replaced by both possibilities. Lastly, there may be two pairs of hits in which

a hit in a pair is consistent with the other hit in the pair, but one pair has measured Z

coordinates that are inconsistent with those of the other pair. The two ways in which this

could have come about by mis-measuring the pad cycle of both hits in a pair are recreated in

place of the original cluster. Once again, these methods rely on the tracking to distinguish

among two possible forms of the true cluster.

Note that when a hit is mis-measured by more than one pad cycle, no attempt is made to

remedy this circumstance.

A parent cluster is assigned a global R and Z coordinate by individually averaging the wire
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R coordinates and inferred Z coordinates of its daughter hits in each plane of the cluster and

then averaging those two measures. This is the best estimate of the particle’s coordinates at

the chamber center.

5.2.3 Track Reconstruction

The arrangement of clusters in an event is then examined for patterns, called track candi-

dates, that resemble one turn of a positron trajectory in the DCH.

Signal positrons tend to reach large radii by virtue of COBRA’s design, where hit rates are

also lowest. This is advantageous for pattern recognition because it facilitates searching for

tracks in a region less prone to accidental hits. This is to be balanced with the desire to

abstain from introducing strongly momentum-dependent acceptance effects aside from those

already inherent in the design of the drift chamber. Exploiting these attributes, the algorithm

begins by finding combinations of three adjacent clusters, called seeds, whose center cluster

resides at the maximum R coordinate of the potential track, with the mild requirement that

it exceed 20 cm to conserve acceptance in a substantial region of positron momentum. A seed

must have spatial agreement between adjacent clusters, no more than one skipped chamber

in its span, and at least one multiple-hit cluster among the three. The difference in the

radius of any two consecutive clusters is restricted to 2 cm, or 4 cm when a skipped chamber

exists between them. The difference in Z coordinates between any two sequential clusters

must lie within a range spanning 4 cm, or 8 cm when separated by a skipped chamber. The

center of this range is a linear function of the Z coordinate, instead of zero, to account for

the fact that clusters at large |Z| could only have come from positrons with large |pz| and are

thus naturally expected to travel a large distance in Z between chambers. The parameters

of this function are chosen to give high efficiency by studying data.

Bereft of any drift time information, the algorithm has not yet pinned down the seed’s radial
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coordinates with much precision. Toward that goal, one can make use of the independently

reconstructed impact times at the TIC; however, it is not possible at this stage to determine

which TIC cluster, if any, is associated with the seed, whose path is only roughly known. This

impediment is overcome by constructing as many duplicate seeds as there are TIC clusters

and attempting to reconstruct each possibility, thus NTIC clusters ∗Nseeds independent seeds

will now exist. Since a positron takes of order 1 ns to make one turn in the DCH, the primary

ionization times along the track are treated as simultaneous to good approximation. The

drift time of the i’th hit in the seed is therefore expressed as

tidrift = tihit − T0, (5.19)

where tihit is the i’th hit’s absolute arrival time as defined during the hit reconstruction stage.

T0, also known as the track time, is calculated by correcting the TIC time by the average

time of flight between the DCH and the TIC. The uncertainty in T0, which is affected by

the TIC time resolution (∼90 ps) and the dispersion in the time of flight (∼1 ns), makes a

negligible contribution to the radial precision (∼40 µm), except when two turns are made

in the DCH. In this instance, one of the turns (the first one) will be reconstructed with

a T0 that is systematically late by typically ∼3 ns, delivering a ∼120 µm component to

its radial resolution. From Eq. 5.19, the drift time refers to the time elapsed between a

primary ionization event and the arrival of the earliest part of the subsequent avalanche. By

treating the track as a straight line at a known angle through the cell, with a continuum of

ionization sites, the measured drift time can be used to infer the distance of closest approach

to the wire whose ionization site of minimum drift time is the closest match. The angle

is inferred by computing the circular path in the XY plane defined by the triplet of X,Y

coordinates in the seed. A massive, finely-binned lookup table derived from the GARFIELD

software (see section 4.4.2) acts as a Rosetta Stone for converting the track angle, drift

time, and local electromagnetic field, to the (x,y) location of the original ionization site. By
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symmetry under reflection about the axis of the wire, the situation is still obscured by a two-

fold degeneracy as to the side of the wire upon which the track impinges. This “left/right

ambiguity” (l/r) is resolved by testing all 2Nhits possible configurations in each cluster and

choosing the configuration that minimizes the figure of merit:

Nhits∑

i=1

(Ri −R)2, (5.20)

where Ri is the R coordinate of the i’th hit projected onto the central chamber plane, and

R is the average of this quantity over all hits in the cluster. The radial cluster coordinate

is then replaced with R to better estimate the local trajectory. Resolving l/r for single-hit

clusters is postponed until the full extent of the track is known.

Next, the algorithm attempts to extend each seed in both directions, adding clusters to

the track until either no more clusters are able to pass the selection criteria or the last

chamber is reached. In projecting the track to the next chamber, the instantaneous track

circle and momentum vector are estimated using only the nearest three clusters. The radius

of curvature is only approximately constant in the non-uniform magnetic field; however, one

can take advantage of the adiabatic invariants for slowly varying axial magnetic fields:

p2
T

Bz

= k1 (5.21)

RtrackBz = k2, (5.22)

where pT and Rtrack are respectively the instantaneous transverse momentum and radius of

curvature, and Bz is the z-component of the magnetic field vector. Based on the conservation

law of Eq. 5.22, an estimate of the expected radial point of intersection of the track with the

next chamber is made. The expected radial intersection is then coupled with two constants

of the motion, |~p| and Eq. 5.21, to predict the intersection in Z. A cluster falling within 4 cm
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of the predicted radial location and 2.5 cm of the predicted Z location is added to the track.

If more than one cluster on the same chamber satisfies the track projection criteria, the track

is split into multiple possibilities, and each is continued along the chamber separately. The

skipping of one additional chamber per direction is allowed in tracking beyond the skipped

chambers from seeding.

Equipped with trajectory information and a track time, the algorithm checks for badly

deviant hits to remove from their liberally formed clusters. On every track, each cluster

is stripped of irregular hits until either all remaining hits satisfy all criteria or only one

hit remains on the chamber. Hit removal is carried out with highest priority on hits with

unphysical drift times (either negative or beyond the maximum possible drift time), then

on hits whose radial or Z projection onto a common plane fails to agree well with the other

hit projections. The projection methods are explained in greater detail in section 8.1.2.

Given a set of Nhits > 2 projected R or Z coordinates ordered from smallest to largest, some

parameters are defined to consider for the removal of the most outlying hit. The set of hits

in the cluster except the one being considered for removal is called the sub-cluster. δZ(R) is

the largest spacing between two adjacent hits in the sub-cluster in R(Z), and ∆R(Z) is the

distance in R(Z) between the candidate for removal and the closest hit coordinate. If either

∆R
δR

> 3 and δR >1 mm or ∆Z
δZ

> 3 and δZ >2 mm, the hit is expelled from the track.

As stated previously, l/r resolution for single-hit clusters cannot be based on the figure of

merit Eq. 5.20. In fact, that method is also problematic for two-hit clusters when the

track direction is nearly parallel to a line connecting the two wires, for then Eq. 5.20 varies

only slightly among the two possible configurations consistent with that track angle. A

supplementary approach is invoked in these cases. Since 3 clusters are sufficient to estimate

the track momentum, there are Nclusters − 2 measurements available, and one can resolve
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these lingering l/r ambiguities by minimizing a surrogate figure of merit:

Nclusters−2∑

i=1

(|~pi| − |~p|)2. (5.23)

A more sophisticated fitting routine is then supplied with a list of hits associated with

each track. It is provided with the measured Z coordinate, the distance of closest approach

to the wire, the l/r resolution, and a set of measurement uncertainties for each hit. The

uncertainty in Z is calculated from the pedestal fluctuation contribution discussed in section

5.2.1 together with an estimated contribution from charge calibration discussed in section

6.2.2. A simple model, linear in the distance of closest approach, estimates the uncertainty

in the radial impact parameter.

5.2.4 Track Fitting

All track candidates with at least 4 clusters are sent to a Kalman filter [59] to fit a trajectory

to the set of hits. At any instant, the charged particle is described by a six-dimensional state

vector:

~x =

{
R,Z, arctan(

py
px

)− φ, pz
pT
,

1

|~p| , φ
}
. (5.24)

From a set of sequential measurements of the state vector, subject to random errors assumed

to be normally distributed, evolving with time according to a known model, the Kalman filter

recursively estimates the true state vectors. Based on the information of k-1 hits, the state

vector at the k’th hit can be predicted:

xk−1
k = F k−1

k xk−1. (5.25)
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Here the best estimate of the state vector at the (k-1)’th hit, xk−1, is propagated to the

location of the k’th hit, xk−1
k , by the operator F k−1

k . Both the effect of the magnetic field

and the average energy loss are encoded in F k−1
k . In the extrapolation from k-1 to k, the

errors on the state vector components will also change:

Ck−1
k = F k−1

k Ck−1(F k−1
k )T +Qk. (5.26)

The predicted covariance matrix at k, Ck−1
k , receives contributions from F k−1

k as well as

stochastic processes in the propagation described by Qk, namely multiple scattering. The

actual measurements of Z and distance of closest approach, mk, are mapped onto the true

state, xk, by a projection matrix, Hk, and the uncertainties of the measurements, εk, accord-

ing to:

mk = Hkxk + εk. (5.27)

The predicted state at k, xk−1
k , is then corrected by the information in the measured state

at k, mk, to produce a filtered estimate of the true state vector at k:

xkk = xk−1
k +Kk(mk −Hkx

k−1
k ). (5.28)

Kk is the Kalman gain matrix, defined as:

Kk = Ck−1
k HT

k (Vk +HkC
k−1
k HT

k )−1, (5.29)

where Vk is the covariance matrix of measurement errors, εk. Concurrently, the full covariance

matrix at state k, Ck
k , is updated:

Ck
k = [I −KkHk]C

k−1
k . (5.30)
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Once all hits are processed, the filter updates, or smooths, all of the filtered state vectors

and covariance matrices with the full information from all hits:

xnk = xkk + Ak(x
n
k+1 − xkk+1) (5.31)

Cn
k = Ck

k + Ak(C
n
k+1 − Ck

k+1)ATk , (5.32)

where

Ak = Ck
kF

T
k (Ck

k+1)−1. (5.33)

A χ2 that tests the agreement between measured and predicted state vectors is used to

gauge badly measured hits for removal and incorrect l/r solutions for switching. A similar

χ2, calculated by comparing state vectors at the closest point near the beam line, serves as a

means by which to check whether or not two fitted tracks should be merged as two turns of

one trajectory. Only tracks that use the same timing counter cluster in defining their track

time are allowed to merge.

The estimated track momentum, before energy loss in going through the chambers, is cor-

rected for energy loss in the target. The decay vertex and positron emission angles are

obtained by propagating the state vector back to the target plane, requiring knowledge of

the target location and orientation, and the TIC impact location is predicted by propagating

the state vector forward to the TIC. An event-by-event indicator of the resolution in each

state vector component is provided by the diagonal elements of the covariance matrix; this

is later exploited in the likelihood analysis.

A discussion of the resolutions in the drift chamber measurements is given in section 8.1.2
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5.3 TIC

After passing through the drift chamber, positrons that reach the timing counter deposit

energy in one or more scintillating bars. The waveforms read out by the PMTs at either

end of each bar provide a measurement of the impact time and an estimate of the impact

position that together serve as the only discriminating tools for matching a TIC hit with

a DCH track. A group of software algorithms first measure the impact time and location

in each hit bar from the PMT waveforms; this information is called a hit. Groups of hits

consistent with coming from the same particle are then identified as clusters.

5.3.1 Waveform Analysis

Recall from section 4.6 that 80% of a PMT waveform is sent to a double threshold discrimi-

nator and then digitized. These NIM pulses form the basis of the waveform analysis. Figure

5.10 displays an example PMT waveform.

Figure 5.10: An example of the waveforms used in the timing counter reconstruction. The
black line is a DRS output, which is fit to a template (red). The blue line is the NIM
pulse output, which is fit to another template (green). The time delay of the NIM pulse
with respect to the DRS waveform is due to an electronic delay in the double threshold
discriminator.
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A template waveform shape for each PMT is constructed from the accumulation of many

events. This template shape is then fit to the NIM pulse (see section 4.6) in each hit for a

flat baseline and a leading edge time.

In addition to the leading edge time, the charge and amplitude are also measured using the

DRS waveforms (one of the 10% outputs of the passive splitter described in section 4.6)

primarily for calibration purposes. The charge is measured by integrating the waveform over

a 30 ns window, and the amplitude is found as the difference between the peak voltage and

the fitted baseline.

5.3.2 Hit Reconstruction

A hit in a bar is defined as the information from the upstream and downstream PMTs

associated with an energy deposit from a charged particle passing through the bar. The

leading edge time from each PMT is corrected for time walk effects, and the difference

between the two times gives a Z coordinate. The hit time is the average of the two leading

edge times corrected for photon propagation time in the bar based on the measured Z

coordinate. Hits are then clustered by closeness in time and Z location. Multi-hit clusters

take the time of the first hit bar as the cluster time.

A discussion of the timing counter time resolution is given in section 8.1.3.

5.4 DCH-TIC Association

At first, the tracking and timing counter reconstruction proceed independently; the tracks

are built using the times of the timing counter hits, but no judgment on whether or not they

are spatially correlated has taken place. The next step is to select pairs of DCH tracks and
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TIC clusters that are consistent with belonging to a single charged particle trajectory.

Each track is propagated to the φ location of the first bar of the TIC cluster whose time was

used to define the track time. If the projected impact point on the bar deviates by more

than 20 cm from the TIC hit Z coordinate (∆ZDCH−TIC) or by more than 10 cm from the

radial coordinate of the bar center (∆RDCH−TIC), the pair is rejected. Lastly, the spatial

matching χ2
TIC−DCH is required to be less than ten to accept the pair.

The time of flight of the trajectory from the muon decay vertex to the impact location in

the TIC is computed by dividing the total path length by the speed of light. The projection

from the last chamber to the TIC is complicated by its length and materials in its path such

as cable ducts and preamplifiers. The accuracy is thus limited by scattering and energy loss.

An additional correction to the time of flight is made according to the value of ∆ZDCH−TIC ,

whose form is determined from Dalitz data (see section 4.7.1).

In events with two (or more) hit bars, the projected path length of the trajectory between

bars is coupled with the two hit time measurements to get two measurements of the impact

time at the first bar. The TIC time estimator is the average of the two measurements in this

case.

The best estimate of the hit time at the first bar is subsequently corrected by the best

estimate of the time of flight to obtain the time of positron emission from the decay vertex,

Te.

5.5 Formation of MEG Candidates

The initial event formation strategy is to fuse the reconstructed positrons and photons in

a single event to construct all possible combinations. In each case, the photon vertex is
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assumed to coincide with the positron vertex, ~xµ. A straight line path from the vertex to

the position of the first interaction, ~xγ, is used to calculate the photon direction vector:

p̂γ =
~xγ − ~xµ
|~xγ − ~xµ|

= (sin θγ cosφγ, sin θγ sinφγ, cos θγ), (5.34)

and to correct the photon interaction time back to the photon emission time by the time of

flight, tγµ:

Tγ = tXEC − tγµ. (5.35)

With this information, one can engineer three quantities that will reconstruct at zero with

maximum probability in a signal event:

teγ = Tγ − Te (5.36)

φeγ = (φe + π)− φγ (5.37)

θeγ = (π − θe)− θγ. (5.38)

The set of five kinematic observables {Ee, Eγ, teγ, φeγ, θeγ} forms the basis of the likelihood

analysis.
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Chapter 6

Calibration

This chapter details the calibration methods used in the experiment. This primarily consists

of calibrating out the effects of electronics properties (e.g., time delays, gain) on the timing,

position, and energy measurements in the detectors, and measuring the orientations of the

detector elements.

6.1 DRS Calibration

The DRS chips, described in section 4.6.2, are calibrated for both voltage-dependent response

and fluctuations in the sampling intervals among each of the 1,024 cells in a chip.

6.1.1 Voltage Calibration

Every cell of every DRS chip has a different non-linear output voltage response to an input

voltage. An internal DC voltage generator on the DRS board is used to prepare detailed

voltage response maps for each cell in each chip. The calibration is done online, so that the
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waveforms stored in the raw data files are already calibrated for voltage response.

6.1.2 Time Calibration

The sampling interval of each cell in a DRS chip can vary due to non-uniformities in the

manufacturing process. These are calibrated by presenting sine waves of known frequency

and random phase from a function generator to each chip. The time between zero crossings

is measured, and all bins widths within the period are uniformly rescaled to match the true

period with the measured period. This is repeated many times until the plots shown in

figure 6.1 stabilize. The sampling interval of each cell of every chip is stored in a database

and applied offline, during event reconstruction.

6.2 DCH Calibrations

6.2.1 Waveform Time Calibration

Upon triggering, the 1,728 DCH channels are read out by the DAQ, and the contents of

each of their 1,024 bins are stored. During the reconstruction, the 1,728 waveforms must

be temporally aligned with one another. A 19.44 MHz internal trigger clock signal is dis-

tributed with precisely cut cables to all of the DRS chips in the experiment and synchronized

with a specific bin, referred to as cell 0, in every DRS. The recorded location of cell 0 in

each waveform serves as a reference for aligning the waveforms in time. Square pulses are

simultaneously input to a few DRS boards to test the full set of effects from hardware and

the software waveform alignment, and the resolution in the pulse time difference between

different DRS channels is measured to be about 260 ps.

On top of this, there are relative electronics delays between channels due, for example, to
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Figure 6.1: Some plots illustrating features of the time calibration on a single DRS chip.
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varying cable lengths connecting the DCH outputs to the DRS boards or varying electronics

delays. The calibration procedure for compensating these systematic delays takes different

approaches for handling the anodes and the pads in view of the different roles they play in

the reconstruction.

Hit times are measured exclusively from anode signals; therefore, time offsets in the anode

waveforms of one wire with respect to those of other wires will deteriorate the drift time

measurement and ultimately the radial position resolution. Time delays between the two

ends of the same wire are also important because they result in misaligned charge integration

windows on the two ends, which in turn damages the anode Z measurement. To determine

the comparative time delays among anode ends, the distribution of measured drift times on

each channel (defined by Eq. 5.19 but with tihit representing the hit time measured from the

correct end) is fit in a restricted range to a quintic polynomial. Figure 6.2 displays a typical

fit. The leading edge of the distribution is calculated as the time when the fitted polynomial

reaches 15% of its peak. An iterative calibration is performed by applying time shifts to

each wire end to move the drift time leading edge toward the mean leading edge position

for that end. Figure 6.3 illustrates the level of convergence achieved on the dispersion of

leading edge positions. The systematic error in the technique is estimated to be around 2 ns

by comparing the leading edge deduced from alternative fitting functions (e.g., third order

polynomial, fourth order polynomial). Persisting offsets in the difference of leading edge

positions among two ends of the same wire are then corrected by distributing the necessary

correction symmetrically across the two ends.

The extent to which the same charge fraction is integrated on both ends of a pad figures

crucially into the Z calculation, while their alignment with waveforms from other cells is

irrelevant. Since the integration region is set by the largest amplitude anode waveform,

synchronized pad and anode waveforms on a cell promotes optimal signal-to-noise ratios

in the charge integration windows. First, systematic time delays between the upstream
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Figure 6.2: The drift time distribution of a particular anode channel fit to a 5th order
polynomial.
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(a) A scatter plot of pre-calibration leading edge
time offsets on the upstream anode versus wire.

Wire #
0 50 100 150 200 250

F
itt

ed
 L

ea
di

ng
 E

dg
e 

[n
s]

-30

-20

-10

0

10

20

30
Entries  257
Mean x   145.2
Mean y   7.423
RMS x   80.15
RMS y   1.165

Entries  257
Mean x   145.2
Mean y   7.423
RMS x   80.15
RMS y   1.165

(b) A scatter plot of post-calibration leading edge
time offsets on the upstream anode versus wire.

Figure 6.3: A pictorial summary of improvement in anode time alignment by calibration.
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and downstream ends of a pad are found by plotting the difference in the peak amplitude

times of the two ends of a pad and fitting for the mean. Figure 6.4 contains an example

fit. Constraining the upstream/downstream time difference to vanish after calibration still

leaves the freedom to shift the times of both ends by any constant amount. This allows the

pad times to be aligned with the anode times by then plotting the difference in the peak

amplitude times as measured by an upstream or downstream pad and anode, fitting for the

means, and applying a constant shift to both ends of the pad based on the relative pad-anode

time offset averaged over the upstream and downstream ends. See figure 6.5 for a typical fit

to such a distribution.

Entries  2754
Mean    -10.8
RMS     3.004

 / ndf 2c  24.38 / 8
Constant  11.5± 416.6 
Mean      0.05± -10.52 
Sigma     0.054± 2.405 

Pad peak time end 0 - Pad peak time end 1 [ns]
-40 -30 -20 -10 0 10 20 30 40

H
its

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

310´
Entries  2754
Mean    -10.8
RMS     3.004

 / ndf 2c  24.38 / 8
Constant  11.5± 416.6 
Mean      0.05± -10.52 
Sigma     0.054± 2.405 

Wire# 134 Pad: CathEndsDiff

Figure 6.4: A fit to the distribution of the difference in peak amplitude times at the two
ends of the cathode pad for a particular cell.

Figure 6.6 shows the level of convergence achieved on reducing these systematic offsets.
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Figure 6.5: A fit to the distribution of the difference in peak amplitude times as measured
from the downstream anode and cathode for a particular cell.

6.2.2 Z Calibration

A variety of electronic hardware properties influence the accuracy with which the anode

and pad determined Z coordinates are measured. Errors in the knowledge of electronics

parameters result in a different class of coherent effects than errors in the assumed wire

positions in real space or in the relative positioning of the chambers. A set of Z calibrations

is executed using only measurements from within the same cell and is thus only sensitive to

the former class of effects.

One group of calibrations involves adjusting the parameters entering into the anode Z calcu-

lation. These calibrations improve the probability of obtaining the correct pad cycle from the

initial, anode charge division determination of Z. Recall that, under simplified assumptions,

the anode Z coordinate is given by Eq. 5.16. The pad geometry, etched onto the foils with

a 5 cm period known to a precision of 100 µm, is easily sufficient to serve as a calibration
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(a) A scatter plot of pre-calibration cathode time
offsets between the two pad ends versus wire.
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(b) A scatter plot of post-calibration cathode time
offsets between the two pad ends versus wire.
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(c) A scatter plot of pre-calibration cathode time
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versus wire.
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Figure 6.6: A pictorial summary of improvement in pad time alignment by calibration.
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reference. Figure 6.7 demonstrates the fundamental calibration tool: profile histograms of

the measured pad charge asymmetry as a function of the measured anode Z coordinate for

each cell. Experimentally, these are well fit to a five-parameter function:

Apad(Zanode) = A0(1 +m|z|) sin(
2π

λ
(Zanode − δ)) + h. (6.1)
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Figure 6.7: A fit of Eq. 6.1 to the pad asymmetry versus anode Z for the hood of a particular
wire.

Calculation of the induced charge asymmetry agrees well with the sinusoidal dependence.

While the function is not technically periodic, the roots are still equidistant and λ represents

the effective length of a pad cycle, and δ is an effective phase (the smallest positive Z at which

the pad asymmetry crosses zero while increasing with Z). h is a vertical offset that can arise

from a relative gain between pad charges, A0 is the amplitude at Z = 0, and m functions as

a slope for the amplitude, which is observed to decrease linearly as one moves away from the
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origin. The anode calibration then consists of measuring the wavelength, λmeas, and phase,

δmeas, on each wire and applying corrections to the measured Z coordinate, Zmeas, to get a

calibrated Z coordinate, Ztrue, possessing the correct wavelength, λtrue = 5 cm, and phase,

δtrue (known from the pad geometry) when fit by Eq. 6.1:

Ztrue =
λtrue
λmeas

Zmeas + δtrue −
λtrue
λmeas

δmeas. (6.2)

The scaling factor, λtrue
λmeas

, in the first term of Eq. 6.2 will differ from unity if the value used

for (L
2

+ R
ρ

) in Eq. 5.16 disagrees with the correct one. This part is calibrated out by making

the substitution:

(
L

2
+
R

ρ
)→ λtrue

λmeas
(
L

2
+
R

ρ
). (6.3)

The remaining terms in Eq. 6.2 produce a translation in the Z coordinate, which can emerge

from a relative gain between upstream and downstream anode preamplifiers or DRSs. Both

the absolute gain on any charge and the relative gain between the cathode and hood pads

are inconsequential to the calculation of Z. Under a relative downstream/upstream gain of

1 + ε, Eq. 5.16 becomes:

(
L

2
+
R

ρ
)
1− Qd

Qu
(1 + ε)

1 + Qd
Qu

(1 + ε)
= (

L

2
+
R

ρ
)
1− Qd

Qu

1 + Qd
Qu

+ d = z + d. (6.4)

That is, the true Z coordinate is shifted by an amount d, such that:

ε = −
(1 + Qd

Qu
)2d

Qd
Qu

(2(L
2

+ R
ρ

) + d+ dQd
Qu

)
. (6.5)

Equivalently, one must translate the rescaled Z coordinate by an amount d = δtrue− λtrue
λmeas

δmeas

according to Eq. 6.2 to turn it into Ztrue. For this value of d, one can find the necessary gain

correction from Eq. 6.5. Since this expression depends on Qd
Qu

and hence Zmeas, it should
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be averaged over the values of Zmeas populating the fit range. This is roughly estimated

by setting Qd
Qu

= 1, which corresponds to Zmeas = 0, the center of the fit range. From the

two sets of pads per cell, two independent measures of the scaling factor on Z and the gain

correction are obtained and averaged. Figure 6.8 encapsulates the distributions in λ and

δtrue − δmeas before and after calibration.
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(a) A scatter plot of pre-calibration fitted values
of λ versus wire.
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(b) A scatter plot of post-calibration fitted values
of λ versus wire.
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(c) A scatter plot of pre-calibration deviations of
anode phase from expected value versus wire.
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(d) A scatter plot of post-calibration deviations of
anode phase from expected value versus wire.

Figure 6.8: A pictorial summary of improvement in anode parameters by calibration.

Another calibration procedure is carried out on the pads to achieve optimal resolution in the

final estimate of the Z coordinate. If there were no systematic, relative downstream/upstream

pad gain, then the pad charge asymmetry distribution would be centered at the origin.

Consequently, the parameter h in Eq. 6.1 can be translated into a relative pad gain. The
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relation is constrained by the orientation of the Vernier pattern. The upstream charge, u,

and downstream charge, d, along the length of one pad cycle can be parameterized as:

u = 1 + a0 sin θ (6.6)

d = 1− a0 sin θ, (6.7)

where a0 is the asymmetry amplitude and θ ranges from 0 to 2π. If the upstream and

downstream charges are respectively subjected to gains Gu and Gd, the pad asymmetry

becomes:

A =
u− d
u+ d

=
Gu −Gd + a0(Gu +Gd) sin θ

Gu +Gd + a0(Gu −Gd) sin θ
=

x+ a0 sin θ

1 + xa0, sin θ
(6.8)

where x =
1−Gd

Gu

1+
Gd
Gu

. The Maclaurin series expansion about x is:

A = a0 sin θ + (1− a2
0 sin2 θ)x+ (a3

0 sin3 θ − a0 sin θ)x2 +O(x3). (6.9)

Keeping terms up to order x, the average pad charge asymmetry over a single pad cycle is:

〈A〉 ≈ (1− a2
0

2
)x, (6.10)

since 〈sin θ〉 = 0 and
〈
sin2 θ

〉
= 1

2
over a pad cycle. Note that Eq. 6.10 vanishes in the limit

x → 0 to any order as expected. From direct data measurements, a0 ≈ .68. Then since

the h parameter is a direct measure of 〈A〉, Eq. 6.10 can be used to find corrective factors

on the pad charges to cancel the observed gains. In the case of the anode calibration, it

is clearly necessary to use Zanode in Eq. 6.1 because the stretching and displacement along

the Zanode axis are of particular interest. When only the displacement along the A axis is of

interest, however, it is possible to use the more precisely determined coordinate from fitted
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track trajectories, Ztrack. Figure 6.9 shows an example of such a fit. Figure 6.10 exhibits

some example fitted values of h (those for the hood pads) before and after calibration. The

initial dispersion of σ〈A〉 = .04 or σZ = 300 µm is reduced to σ〈A〉 = .006 or σZ = 40 µm.

In fact, the pad calibration is performed for both Zanode and Ztrack. Figure 6.11 compares

the fitted values of h from both measurements summed over all wires. The width of that

distribution, σ∆h = .009, provides an estimate of the systematic error in the calibration

procedure, σZ = 70 µm.
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Figure 6.9: The same as figure 6.7 except that fitted track Z coordinates are used in place
of anode Z coordinates. The advantage is that the fits are typically more stable.

The method of measuring the Z coordinate using the Vernier pads assumes that the charge

asymmetry on both (cathode and hood) pads varies sinusoidally with equal amplitudes, that

is a0 in Eq.s 6.6 and 6.7 must be the same for both pads of a cell. That assumption is

known to be violated by at least one effect. The chambers, being operated at 1.2 Pa above

the pressure in the surrounding magnet volume, experience bowing of the outer hood foils.
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Hood Asymmetry Offset vs. Wire

(a) A scatter plot of pre-calibration fitted values of h versus wire.
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Hood Asymmetry Offset vs. Wire

(b) A scatter plot of post-calibration fitted values of h versus wire.

Figure 6.10: A pictorial summary of improvement in relative pad gains by calibration.
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(a) The difference in the values of h found by two different methods for the hood pads
versus wire.
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(b) The difference in the values of h found by two different methods for the cathode pads
versus wire.

Figure 6.11: Scatter plots of the difference in h using anode determined Z coordinates and
fitted track Z coordinates.

128



The bulge of the hood is largest near Z = 0 and at middle cell numbers because the foil

is only attached at the edges of the chamber. This means that the two pad foils are not

equidistant to the anode wire, but vary instead as a function of Z even within the same cell.

The induced charge as well as the magnitude of the charge asymmetry also differ between

the two pads depending on Z. The situation is further complicated by additional effects from

changes in pressure with elevation and gravitational pressure on the pads. As a result, each

wire is treated separately for calibration purposes. To correct this phenomenon, one needs

the ratio of the pad asymmetry magnitudes, Acathode

Ahood
, as a function of Z on each cell. From

the distribution of charge asymmetry versus Z coordinate, one can extract the asymmetry

magnitude every 5 cm by making use of the relation between the amplitude and RMS over

a full period of a pure sine wave:

amplitude = RMS ×
√

2. (6.11)

This information is, in principle, sufficient; however, trends in Acathode

Ahood
along Z are, in practice,

hidden by large statistical fluctuations and this approach is not feasible. On the other hand,

Qcathode

Qhood
=

Qcathodeu +Qcathoded

Qhoodu +Qhoodd
, which is related to Acathode

Ahood
for geometric reasons, does exhibit a

clear, expected dependence on Z. As in figure 6.12, such plots are fitted to a cubic polynomial

in |Z| of the form:

Qcathode

Qhood
(Z) = a+ b|Z|2 + c|Z|3. (6.12)

By symmetry, the charge ratio must be invariant under Z → −Z. Then, in order for the

derivative to exist at the origin: d
dz
Qcathode

Qhood

∣∣∣∣
z=0

= 0. This is guaranteed by the omission of a

linear term in Eq. 6.12. In this instance, the relative gain between hood and cathode charges

is relevant and is obtained from the constraint that the charge induced on either pad should

be equal at the end of the wire where they are equidistant to the anode wire by virtue of
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Figure 6.12: A profile histogram of the charge ratio versus |Z|. This is fit to a cubic
polynomial (solid black), which is extrapolated to the end of the wire (dashed red) to correct
for the relative cathode-to-hood gain.

130



the chamber construction. Thus for a wire of length L, the gain corrected charge ratio must

obey: Qcathode

Qhood
(L

2
) = 1. For these measurements to be of use, the charge ratio must be related

to the ratio of charge asymmetry magnitudes of the two pads. This relationship is extracted

directly from the data from a plot of the charge ratio dependence of the charge asymmetry

magnitude ratio, calculated from Eq. 6.11, summed over all wires and values of Z. As shown

in figure 6.13, this is fit to a line forced to obey the physical constraint that Acathode

Ahood
= 1

when Qcathode

Qhood
= 1.
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Figure 6.13: A fit to the asymmetry ratio dependence on the charge ratio, using data from

all functioning wires. Enforcing the constraint that Acathode

Ahood
= 1 when Qcathode

Qhood
= 1 leaves one

free parameter, the slope of a line passing through that point. The slope is ∼ 0.24 units of
change in the asymmetry ratio per unit of change in the charge ratio.

Finally, a calibration is done to remove the effect of the bowing on the Z coordinate calcu-

lation during the reconstruction by finding the charge ratio for each hit based on an initial

evaluation of Z and applying Eq. 6.12, then rescaling the ratio of asymmetries as they appear

in Eq. 5.18 for a final evaluation of Z. Figure 6.14 exhibits the level of success in reducing
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the correlation between Acathode

Ahood
and Qcathode

Qhood
after calibration.

Entries  13
Mean    1.128
Mean y   1.003
RMS    0.0892
RMS y  0.03722

 / ndf 2c  75.69 / 19
p0        0.004932± -0.005083 

hood
/Q

cathode
Q

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

ho
od

/A
sy

m
m

et
ry

ca
th

od
e

A
sy

m
m

et
ry

0.97

0.98

0.99

1

1.01

1.02

Entries  13
Mean    1.128
Mean y   1.003
RMS    0.0892
RMS y  0.03722

 / ndf 2c  75.69 / 19
p0        0.004932± -0.005083 

AsymRatiovsChargeRatio

Figure 6.14: The same as figure 6.13 but after rescaling the hood asymmetry to correct for

bowing. The constraint that Acathode

Ahood
= 1 when Qcathode

Qhood
= 1 is again enforced. The slope is

not statistically significant.

6.2.3 Chamber Alignment

The muon stopping target, drift chamber modules, and the support structure are outfitted

with reference marks that are measured by an optical survey technique to determine their

absolute positions. Figure 6.15 shows the locations of the target markers. A plane is fit

to the measured target cross positions, which is then used to infer the orientation and

location of the target plane. Figure 6.16 illustrates the placement of reference marks on the

chamber modules and support structure. On top of each chamber module, a thin plate with

a cross mark is glued at both the upstream and downstream ends. The chamber modules
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are fastened between carbon blocks on the support structure. The blocks each contain two

sets of pins. The line connecting the midpoint of the pins and the cross position gives the

full orientation of the module in the XY plane for fixed Z. From the measured positions of

the upstream and downstream crosses, the three-dimensional orientation is then deduced by

treating the module as a rigid body. These measurements are ultimately translated into a set

of wire positions and directions that are used in the reconstruction. The survey measurement

precision is thought to be about 200 µm in Z and negligible in X and Y (about 20 µm).

Figure 6.15: A diagram of the target marker locations.

The survey-determined chamber positioning is checked and refined by a technique based on

the Millipede algorithm[60] using cosmic rays.

The Millipede alignment is cross-checked by a relative chamber alignment technique using

Michel positrons. The radial chamber alignment is analyzed by taking three non-consecutive

hit chambers on a track and using the circle defined by their R − φ coordinates to project,

as described in section 5.2.3, to the single chamber they enclose and plotting the difference

in the measured and projected R coordinate. Figure 6.17 shows this pull distribution for

a single chamber as well as radial shifts to be applied as a function of chamber number.

Because this diagnostic is insensitive to absolute chamber positions, the overall location of

the support structure in real space is constrained by fixing the positions of the edge chambers
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(a) A photograph of survey cross marks. (b) A photograph of survey pins.

(c) A schematic of survey markers on the chamber modules.

Figure 6.16: Figures showing the location of chamber survey markers.
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(a) A Gaussian fit to the radial pull distribution for a chamber.
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(b) Radial corrections to be applied to each chamber before alignment.

Figure 6.17: Some plots illustrating the features of the radial chamber alignment.
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(chamber 0 and chamber 15) to their optical survey values. The other 14 radial chamber

positions are then shifted to bring the means of the pull distributions closer to zero. This

procedure is iterated until the desired level of convergence is achieved. Figure 6.18 presents

the level of convergence after the final iteration; the residual corrections are far below the

single-hit position resolution.
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Figure 6.18: Radial corrections to be applied to each chamber after alignment.

Exactly the same process is applied to correct the relative chamber positions along Z, except

that the pull distributions are formed with fitted tracks by plotting the difference between

the z component of the state vector (see section 5.2.4) and the measured Z coordinate of the

corresponding hit. Figure 6.19 illustrates various features of this alignment.

A similar set of diagnostics are utilized to search for tilting of the chamber modules beyond

what is captured in the optical survey. The radial pulls are plotted as a function of the

measured Z coordinate for each chamber. A uniform tilt in the R-Z plane (a rotation about

the φ-axis) is signaled by a line with a slope significantly different than zero. Lastly, the

radial pulls are plotted as a function of track angle for each wire. Figure 6.20 defines the
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(a) A Gaussian fit to the Z pull distribution for a chamber.
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(b) Z corrections to be applied to each chamber
before alignment.
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(c) Z corrections to be applied to each chamber
after alignment.

Figure 6.19: Some plots illustrating the features of the Z chamber alignment.
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track angle. This diagnostic is sensitive to displacements of the cell in the X-Y plane (and

equivalently chamber tilts in this plane): (1) Track angles near zero show little effect, (2)

the radial pull distribution mean tends toward larger absolute values as the track angle

moves away from zero, (3) and track angles with opposite sign have an average pull with

opposite sign. Figure 6.21 presents some representative examples of these plots. They are

all consistent with no such chamber tilts or transverse displacements, so no corrections are

made.

Figure 6.20: The track angle is the angle in the X-Y plane made with respect to the normal
to the central chamber plane as marked by θ in this diagram. It is positive when the track is
headed toward positive R, zero when the track is normal to the central chamber plane, and
negative otherwise.

Both the Millipede alignment using cosmic rays and the Michel alignment have some short-

comings. An alignment using tracks at fixed track angle with respect to a chamber plane is

insensitive to a translation of the chamber in the direction of the tracks, hence any alignment

scheme requires a range of track angles at each chamber to constrain the position perpen-

dicular to the chamber plane. Rotations of a chamber about the z-axis, which change the φ

coordinates of different wires in the chamber by different amounts, require a range of track
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(a) A line fit to the radial pull versus Z for a chamber.

dRClsToProj16vsClsAngl_005

Entries  28204

Mean    -2.43
Mean y  0.001475

RMS     16.06
RMS y  0.1281

 / ndf 2c  0.004069 / 28

p0        0.1825742± 0.0008092 
p1        0.0105468± -0.0004583 

Track Angle [degrees]
-80 -60 -40 -20 0 20 40 60 80

 [c
m

]
pr

oj
ec

tio
n

-R
m

ea
su

re
d

R

-0.2

-0.15

-0.1

-0.05

0

dRClsToProj16vsClsAngl_005

Entries  28204

Mean    -2.43
Mean y  0.001475

RMS     16.06
RMS y  0.1281

 / ndf 2c  0.004069 / 28

p0        0.1825742± 0.0008092 
p1        0.0105468± -0.0004583 

(b) A line fit to the radial pull versus track angle for a chamber. There are wiggles
that are not consistent with chamber offsets and possibly due to the time to distance
relationship with track angle. The points are given equal weight in the fit to account for
these effects.

Figure 6.21: Some plots illustrating the features of the rotational and transverse chamber
alignment.
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angles for each wire in the chamber to measure. One disadvantage of the cosmic ray data is

that the range of track angles and the number of wires with high hit rates is limited. Because

the cosmic ray data is collected with the magnetic field turned off, it also cannot detect a

misalignment of the assumed magnetic field map with respect to the assumed location of the

drift chamber system. An advantage of the Millipede algorithm is that the relative chamber

alignment is less sensitive to the assumed starting positions of the chambers.

6.3 XEC

6.3.1 PMT Gain

The PMT gain calibration presumes that the LEDs function as a fixed source of photons,

and that the resulting number of photoelectrons produced in the photocathode of a recipient

PMT is Poisson-distributed. By these assumptions, the mean number of photoelectrons is

Npe = Npho×QE, the variance is σNpe =
√
Npe, and the measured charge is Q = Gain×Npe,

where Npho is the number of photons in an event and Npe is the number of photoelectrons

from some PMT. The uncertainty in the measured charge can be modeled as the union of

two uncorrelated parts: statistical fluctuations in Npe and electronic noise effects. In this

model,

Q = Gain×Npe (6.13)

σ2
Q = Gain×Q+ σ2

noise. (6.14)

A large sample of events is acquired for each of ten different, fixed LED intensities. Each

of the ten distributions of Npe is fit for the mean and variance to supply a data point for
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a graph of σ2
Q versus Q. Figure 6.22 shows these distributions. The slope of this plot is a

measure of the PMT gain.

(a) An example of superimposed charge distributions for ten different LED intensities
for a single PMT.

(b) A scatter plot of variance versus mean of the charge distributions for a single
PMT. Each data point corresponds to a unique LED intensity.

Figure 6.22: Plots illustrating the PMT gain calibration method.
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6.3.2 Quantum Efficiency

The dedicated α radiation sources mounted in the calorimeter serve as the reference for

calibrating PMT quantum efficiencies. The expected amount of observed light from an α

source at a fixed position with respect to a PMT is simulated by Monte Carlo. Discrepancies

of the measurements are calibrated out by adjusting the quantum efficiencies of the PMTs.

The precision of the product Gain × QE is investigated by selecting groups of four PMTs

arranged in a rectangular pattern on a given face and checking Npho in each of the tubes,

averaged over many events that are selected to be symmetric with respect to the 4 tubes.

If the overall photon distribution is isotropic and homogeneous, then the illumination at

the four tubes should be equal. Deviations from unity of the ratio of the average number

of photons in one of the PMTs to that of all four provide a measure of σGain×QE for that

PMT. The uncertainty, σGain×QE, inferred from this procedure is generally below 5%, which

is estimated to produce a contribution to the photon energy resolution of about 0.6%.

6.3.3 Timing Calibration

The PMT time delays are taken from charge exchange data (π0 → γγ) with the NaI detector

serving as a reference timer. To determine the various parameters involved in Eq. 5.11, veff

is initially set to 10 cm/ns, the expected group velocity for the spectrum of scintillation

photons in liquid xenon, and the ∆tdirect term is accordingly corrected out. The ∆tscatter

piece is then removed by modeling the dependence of ∆tdelay on the angle η and calibrating

it away. Any residual systematic correlation between ∆tdelay and Npe for this PMT is treated

as a time-walk effect. The consistency of the resulting calibration is checked by looking for

any dependence of tXEC on the total number of photoelectrons in an event, N total
pe . A linear

correlation is observed and then eradicated by tuning veff = 8 cm/ns.
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After tdelay is fully corrected, toffset,i in Eq. 5.10 is obtained for each PMT by aligning

tinteraction,i among them.

6.4 TIC

6.4.1 Z-coordinate calibration

Relative time offsets between the two PMTs coupled to a single bar are calibrated by ad-

justing them to center the ∆ZDCH−TIC distributions on each bar. The effective velocity

of scintillation light in the bars is measured from data by again using the extrapolated Z

position of the track at the bar from the DCH measurements as a reference and measuring

the slope of it versus the difference in PMT times at the two ends of the bar.

6.4.2 Bar-to-bar time offsets

The time offsets of one bar relative to another are calibrated using Michel events in which a

positron crosses two bars. The time measured at one bar can be compared to the other by

correcting for the time of flight between bars, which is estimated event-by-event, typically

200 ps. The time offsets are adjusted so that all downstream bars are aligned with bar 0, and

all upstream bars are aligned with bar 15. The upstream and downstream timing counter

bars are aligned with each other and the XEC using Dalitz data. The effectiveness of this

technique is confirmed on Boron data (p + B → γ(4.4 MeV ) + γ(11.7 MeV ) + C). Events

where the 4.4 MeV photon is detected in the calorimeter and the 11.7 MeV photon collides

with a TIC bar are selected, and the mean time difference between the two simultaneous

photons is plotted as a function of bar number (see figure 6.23). The residual dispersion in

this time difference is at the level of 28 ps among upstream bars and 49 ps among downstream
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bars. A residual timing offset between the upstream bars (15-29) and downstream bars (0-

14) is apparent in the plot. It is also seen as an offset in the muon radiative decay timing

peaks for upstream and downstream events as discussed in section 8.2.1, and it is accounted

for in the likelihood analysis as discussed in section 9.2.3.

Figure 6.23: Scatter plot of time offsets versus bar number.

6.4.3 Time Walk

The severity with which pulse-height slewing affects the leading edge extraction is actually

visible in the template waveform shape, as described in section 5.3.1, used in the fit. The

time dependence on x ≡ low threshold
pulse height

is fit to a function with three floating coefficients:

T (x) = A+B
√
x+ C log x. (6.15)
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The result is then used on an event-by-event, and PMT dependent basis to correct for the fact

that as the pulse height increases, the fitted leading edge time would otherwise systematically

decrease. Typical values of the coefficients are A=2.2, B=4.8, and C=0.2, with T(x) varying

by ∼ 2 ns over the range of interest of x < 0.04.
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Chapter 7

Event Selection

This chapter reports the selection criteria placed on both the positron and the photon to re-

duce poorly reconstructed events. The quality of the resolutions vary with respect to various

event properties, but this is largely incorporated into the likelihood analysis with appropri-

ate event-by-event PDFs, whose details are discussed in chapter 9. Thus, the strategy for

choosing selection criteria is based primarily on eliminating those types of events upon which

claiming a discovery would be dubious, and not on making cuts with small acceptance losses

to improve the resolutions.

7.1 Photon Cuts

7.1.1 Fiducial Volume

When a photon interacts near the edges of the calorimeter, the quality of reconstruction

deteriorates due to increased energy leakage and PMT saturation. These events are removed

by requiring the first conversion point to satisfy: |u| < 25 cm and |v| < 71 cm, which
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excludes half the sensitive area of the outermost PMTs in u and v. The entire sensitive

depth is retained: 0 < w < 38.5 cm. These cuts are illustrated in figure 7.1. Table 7.1 gives

the acceptance losses for these cuts.

Figure 7.1: The accepted regions of the calorimeter are shown in red in the u-v plane (left)
and the u-w plane (right).

7.1.2 Cosmic Ray Veto

Photons originating from the stopping target tend to interact close to the inner face and

strongly illuminate the PMTs there. Deep events, and those which strongly illuminate the

outer face PMTs, are characteristic of cosmic rays entering the calorimeter through the outer
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shell. To reject these events, a cut is made on a combination of the ratio of inner face to outer

face scintillation photons, Ninner
Nouter

, and conversion depth: −420Ninner
Nouter

+120 < w < 15Ninner
Nouter

+15.

This effectively places a minimum requirement on Ninner
Nouter

> 0.194. From Monte Carlo, this

cut is estimated to be 99% efficient and to reject 56% of cosmic rays.

7.1.3 Pileup Rejection

Section 5.1.2 describes how pileup events are handled when two peaks in the inner and outer

face light distribution are detected. An additional requirement is made on these events that:

0 <
Enormalγ −Epileup correctedγ

Enormalγ
< 0.1. Here Enormal

γ is the total deposited energy and Epileup corrected
γ

is the energy after removing the secondary shower centroid. This cuts events in which the

secondary photon contributes an unusually large number of scintillation photons. In the

event that pileup is recognized by the χ̂2
time criteria of section 5.1.2 but not by the presence

of multiple peaks in the light distribution, the event is considered irrecoverable and rejected.

From Monte Carlo, the efficiency of the pileup rejection is estimated to be 95.5%.

7.2 Positron Cuts

In this section, each plot is made by imposing all cuts on the positron except the one being

examined.

7.2.1 Fiducial Volume

The direction of the positron momentum vector must be oriented such that a back-to-back

photon enters the calorimeter acceptance defined in section 7.1.1. Since this cut must be

made on positrons in the normalization sample, it must be made on MEG candidates as
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well. Figure 7.2 shows these cuts overlaid on data distributions of those variables. Table 7.1

gives the acceptance losses for these cuts.
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(a) Distribution of the positron u coordinate when
backwards projected into the calorimeter versus
positron energy.
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(b) Distribution of the positron v coordinate when
backwards projected into the calorimeter versus
positron energy.

Figure 7.2: Distributions of the positron coordinates when backwards projected into the
calorimeter. The regions between the red lines are retained by the cuts.

7.2.2 Drift Chamber Hit Pattern

A number of selection criteria are imposed based on the pattern of hits in the drift chamber.

For the following hit and chamber counts, only reliable hits are counted; those which derive

their Z coordinate from the anode wires because the pads do not function are excluded (see

5.2.1).

At least seven hits are required. This is a minimal cut, considering that in the simplified

scenario of a charged particle moving in a uniform magnetic field, already five parameters are

required to specify the helix trajectory: (x0, y0) coordinates at a reference plane z = z0, the

magnitude of the momentum, and two angles to specify the direction. At least four chambers

must contain hits, the span of the track must cover at least five chambers, and at least two

chambers must contain more than just a single hit. Tracks failing these criteria have very few
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constraints, and tracks producing only a single hit in a certain chamber provide very little

information for resolving its left/right ambiguity. Tracks making more than two turns in the

drift chamber are further eliminated. Lastly, if the projected maximum radial coordinate

of the fitted track exceeds that of the drift chamber modules, the event is rejected. This is

because positrons that go through the carbon frame will have increased scattering and poor

resolution. Figure 7.3 illustrates these cuts overlaid on data distributions of those variables.

Table 7.1 gives the acceptance losses for these cuts.

7.2.3 Quality of Track Fit

The Kalman filter discussed in section 5.2.4 provides several indicators of the quality of the

track fit. One is the normalized χ̂2 that compares predicted and measured state vectors

along the track. A requirement is made that χ̂2 < 12. Estimates of the energy and angle

uncertainties are also produced by the Kalman filter. A loose cut on the energy uncertainty

is made, δEe < 1.1 MeV, because the dependence of the likelihood PDFs on δEe are incor-

porated into the analysis. The positron angle uncertainties are required to pass δφe < 1.5◦

and δθe < 0.6◦. The selections generally retain most of the distributions in those variables.

Figure 7.4 displays these cuts overlaid on data distributions of those variables. Table 7.1

gives the acceptance losses for these cuts.

7.2.4 Stopped Muon Consistency

Additional cuts are made to ensure that the positron is consistent with coming from the

stopping target. The reconstructed vertex is required to be within an ellipse that excludes

the target frame by 5 mm. This is to avoid accepting events that originate in the Rohacell

target frame. An even tighter cut is made to remove events falling outside an ellipse whose

center and axes are chosen to retain ∼ 2σ of the beam stopping distribution, since events
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failing this have increased probability of originating from a muon stopping in the helium

gas. Two-turn events in which the first turn is missed during the reconstruction also have an

increased chance of failing this cut. Figure 7.5 gives these cuts overlaid on data distributions

of those variables. Table 7.1 gives the acceptance losses for these cuts.

7.2.5 Projection to Timing Counter

Cuts are also made on the closeness of the spatial projection of the track in the drift cham-

ber to the measured timing counter impact location. Some requirements are made on the

variables defined in section 5.4: |∆RDCH−TIC − 1.8| < 5 cm and |∆ZDCH−TIC | < 12 cm.

The radial cut is off-centered to account for the non-zero mean observed in that distribution.

Events well outside these cuts are likely to have undergone large scattering in going from the

drift chamber to timing counter. Figure 7.6 presents these cuts overlaid on data distributions

of those variables. Table 7.1 gives the acceptance losses for these cuts.

7.2.6 Ghost Selection

Because the tracking algorithm attempts to reconstruct all possible tracks in a high rate

environment, more than one manifestation of the same track may be identified in a single

event. For example, if two clusters of hits are found on a chamber, it may be possible to

place either of them on and successfully fit an otherwise identical track. In this case, two

nearly identical tracks may survive selection criteria. Accordingly, a procedure is developed

to classify all manifestations or “ghosts” of the same track and to select among them. All

of the fitted tracks in an event are compared with one another and any two are considered

to be ghosts of the same underlying track if the following conditions are met:

1. They both derive their track time from the same timing counter cluster.
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2. The number of chambers with at least one hit in common is more than half the total

number of hit chambers on the shorter of the two tracks.

Each track in a set of ghost tracks is then assigned a ranking to indicate its quality of

reconstruction. This rank, R, is assigned based on the χ̂2 of the track fit and the chamber

span, S, of the track:

R =
1

S
+ αχ̂2. (7.1)

α = .025 is chosen so that the first term dominates the ranking when tracks have very similar

χ̂2 and vice-versa.

The selection procedure begins by eliminating all tracks in an event that do not pass the

above selection criteria. In the case that more than one ghost of the same underlying track

passes cuts, only the one with the smallest ranking, R, is selected. Thus, it is possible for

more than one track to pass selection cuts in a single event only if they are not found to be

ghosts of the same track.
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Table 7.1: A table of inefficiencies for each cut. The individual positron cut inefficiencies are
tabulated as the fraction of events rejected by making only the cut with respect to making no
cuts. The combined losses are tabulated similarly for each group of cuts made simultaneously
with respect to making no cuts. In tabulating the photon acceptance cut inefficiencies, the
positron cuts, pileup cut, and cosmic ray cut are already applied.

Class of Cuts Cut Individual
(Combined Loss (%)) Definition Loss (%)

γ Fiducial Volume (3.0)
|u| < 25 cm 2.5
|v| < 71 cm 0.6

e+ Fiducial Volume (26.1)
|u| < 25 cm 14.9
|v| < 71 cm 12.7

DCH Pattern (8.6)

Nhit ≥ 7 2.2
Nchamber ≥ 4 1.5

Chamber Span ≥ 5 6.2
Nmultihit ≥ 2 1.1
Nturns ≤ 2 0.1

Rmax within DC module 0.5

Track Fit Quality (15.9)

χ̂2 < 12 1.6
δEe < 1.1 MeV 3.0
δφe < 1.5◦ 14.1
δθe < 0.6◦ 0.1

Vertex Cuts (16.3)
Target Frame Cut 12.0
Beam Spot Cut 14.7

DCH-TIC Matching (9.2)
|∆RDCH−TIC − 1.8| < 5 cm 2.3
|∆ZDCH−TIC | < 12 cm 8.1
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(a) Distribution of the number of hits versus
positron energy.
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(b) Distribution of the number of hit chambers
versus positron energy.
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(c) Distribution of the chamber span versus
positron energy.
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(d) Distribution of the number of multiple hit
chambers versus positron energy.
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(e) Distribution of the number of turns versus
positron energy.
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(f) Distribution of the projected maximum track
radius versus positron energy.

Figure 7.3: Distributions of various positron variables related to the hit pattern. The red
lines mark the cuts.
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(a) Distribution of χ̂2 versus positron energy.

 Energy [GeV] 
40 45 50 55 60 65

-310´

 e
ne

rg
y 

un
ce

rt
ai

nt
y 

[G
eV

] 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
-310´

Entries  36356
Mean x  0.04945
Mean y  0.0004282
RMS x  0.00258
RMS y  9.1e-05

Entries  36356
Mean x  0.04945
Mean y  0.0004282
RMS x  0.00258
RMS y  9.1e-05

(b) Distribution of δEe versus positron energy.
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(c) Distribution of δφe versus positron energy.
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(d) Distribution of δθe versus positron energy.

Figure 7.4: Distributions of various positron variables related to track fit quality. The red
lines mark the cuts.
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(a) Distribution of vertex locations normalized to
the ellipse of the target frame cut versus positron
energy.
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(b) Distribution of vertex locations normalized to
the ellipse of the beam cut versus positron energy.

Figure 7.5: Distributions of vertex locations normalized to elliptical cuts. The cuts reject
everything above the red lines.
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(a) Distribution of ∆RDCH−TIC versus positron
energy.
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(b) Distribution of ∆ZDCH−TIC versus positron
energy.

Figure 7.6: Distributions of variables related to DCH-TIC matching. The regions between
the red lines are retained by the cuts.
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Chapter 8

Hardware and Software Performance

A maximum likelihood analysis of the data requires a good knowledge of the detector reso-

lutions and acceptances, which are combinations of many effects at both the hardware and

software reconstruction level. This chapter summarizes the overall performances achieved,

attempts to isolate contributing factors to the various resolutions and efficiencies, and ex-

plains the methods by which they are measured. The selection criteria of chapter 7 are

applied in all cases unless an exception is explicitly stated.

8.1 Detector Resolutions

This section outlines the individual detector performances.

8.1.1 XEC

Position Resolution The position of the first conversion in the calorimeter is used to

infer the photon emission angle. Thus, one needs the resolution in this measurement in
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order to obtain the relative angle response functions. A set of charge exchange runs taken

with lead bricks positioned directly in front of the calorimeter entrance window, functions

as a basis for extracting the position resolutions along u and v from data. This setup is

outlined in Figure 8.1. Figure 8.2 gives the reconstructed position distributions for the lead

brick data. The projection of the v coordinate shows three peaks corresponding to the three

slits. This distribution is modeled as three Gaussian resolution functions, two error functions

representing the effects at the edges of the brick, and a flat component representing a set of

events penetrating the brick that are uniformly distributed in v. Since the Gaussian parts

receive contributions from the width of the slit and the spread of the pion decay vertex, they

do not directly represent the position resolution. A Monte Carlo simulation of the lead brick

setup is performed to infer the true position resolution. It predicts a Gaussian width that

is systematically smaller than that obtained from the data, and the difference is assumed

to be due to a resolution component from PMT quantum efficiency errors of about 1.8 mm.

The position dependence of the v resolution is then taken from Monte Carlo simulation and

a 1.8 mm resolution contribution is added in quadrature by assuming that it affects the v

resolution in the same uncorrelated way at all positions. A similar procedure is applied to

get the u resolution, which can also be checked with data, and to get the w resolution, which

cannot be checked with data. Deep events have worse resolution since the light distribution

on the inner face gets broader, and very shallow events suffer from PMT saturation. The

best resolution also tends to occur when the light is distributed to more PMTs, which is

controlled by the u and v location of the shower. The u and v resolutions are well fit to

double Gaussians, both having an effective resolution of σu,v ∼ 5 mm (70% of events in

core with resolution of ∼ 4 mm, tail resolution of ∼ 8 mm), averaging over the position

dependence. The w resolution is treated as a single Gaussian, which is σw ∼ 6 mm when

averaged over its position dependence. These are to be compared with goal resolutions of

∼ 3.5 mm.

158



(a) Lead bricks with 1 cm wide slits. A PMT is
shown for reference on top of the bricks on the
right.

(b) Configuration of bricks at the
calorimeter entrance window.

Figure 8.1: Lead brick apparatus for measuring XEC position resolution.

(a) Scatter plot of u,v positions. (b) Projected distribution of v positions.

Figure 8.2: Measured distributions of u,v positions from the lead brick data.
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Timing Resolution The time of the first conversion in the calorimeter directly enters

the calculation of the relative positron-photon emission time, thus the resolution of this

measurement constitutes a contribution to the resolution of the relative time as used in the

likelihood analysis.

Intrinsic timing resolution An estimate of the intrinsic resolution of the time reconstruc-

tion is performed by dividing the PMTs into two groups and comparing the reconstructed

conversion time from each PMT group event-by-event. There is a set of odd numbered PMTs

and a set of even numbered PMTs as illustrated in Figure 8.3. One conversion time mea-

surement, todd, is reconstructed based on only the measurements of odd PMTs, and another

measurement, teven, is made from even PMTs. The dispersion in the quantity todd−teven
2

is

mathematically equivalent to the uncertainty in todd+teven
2

, which is practically the same as

tXEC from section 5.1.2. This technique tests the precision of the PMT waveform time ex-

traction and the dependence on photo-statistics and location within the calorimeter. Effects

from the position reconstruction and the event-by-event shower spread are largely canceled

out, however, because both PMT groups tend to experience a similar effect. When averaged

over position, this gives Gaussian resolutions of 37.5 ps at 55 MeV and 30.5 ps at 83 MeV.

Interactions occurring very close to the lateral faces (in u and v) or at very shallow depth (in

w) have deteriorated time resolutions due to shower leakage and thus fewer photoelectrons.

Effective timing resolution To evaluate the full timing resolution of the calorimeter,

simultaneous photons from π0 → γγ events are exploited by using the reconstructed time

from the scintillators of the NaI detector of one photon as a reference with which to compare

the XEC reconstructed time of the other photon. The full calorimeter volume is scanned by

moving the NaI detector to different positions.

Figure 8.4 displays the difference between tXEC and the NaI reference time over many events.
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Figure 8.3: A representation of the PMT grouping scheme for intrinsic timing evaluation.
Blue circles correspond to odd group PMTs while orange circles correspond to even group
PMTs.

The Gaussian width of this distribution is 171 ps at 55 MeV and 163 ps at 83 MeV. These

values contain a contribution of about 72 ps from the NaI time resolution and a component

of about 58 ps from the spread of the pion decay vertex. The inferred calorimeter time

resolutions are therefore 144 ps at 55 MeV and 134 ps at 83 MeV. An additional component

is present in these estimates from the synchronization of the NaI and XEC digitizers due to

DRS timing problems when they were first installed that only affected the charge exchange

run. Its size is estimated to be roughly 130 ps. In a previous MEG run (during 2008), when

this problem was not present, the intrinsic timing resolution was comparable at 44 ps, and

the effective timing resolution was found to be 78 ps. This is to be compared with a goal

resolution of 43 ps.

Photon Energy Resolution The photon energy response function is taken from the

reconstructed energy distribution of monochromatic 55 MeV photons from π0 decay (see
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Figure 8.4: Distribution of the NaI time and XEC time difference for coincident photon
pairs.
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Figure 8.5), which are very close to the signal energy. The 55 MeV photon sample is isolated

by requiring an 83 MeV photon in the NaI detector and an opening angle greater than

175◦. The low energy tail is made up of photons interacting in front of the calorimeter and

shallow events with energy leakage through the front face. This distribution is sensitive

to not only the intrinsic resolution introduced by the energy reconstruction algorithm and

the detector itself, but also to pileup effects that are unique to the π− beam environment.

The latter component looks different in the normal µ+ beam environment. The intrinsic,

beam-independent photon energy resolution is modeled by a piecewise function:

f0(x) =





A exp( t
σ2
up

[
t
2
− (x− x0)

]
)

A exp( (x−x0)2

−2σ2
up

)

x ≤ x0 + t

x > x0 + t.
(8.1)

A is constrained by normalization in a likelihood fit, x0 is the location of the peak, t indicates

the distance from the peak position at which the piecewise definition changes, and σup is the

resolution of the high energy part. The π− beam specific part is captured in a histogram of

the energy distribution in noise-triggered events, hπ(x). The convolution, f0(x) ⊗ hπ(x), is

then fit to the 55 MeV photon data, as in Figure 8.5.

A µ+ beam specific distribution, hµ(x), is obtained similarly, and the convolution, f0(x) ⊗

hµ(x), represents the signal photon energy response function. The effective σup of that

convolution varies strongly with depth. For w > 2 cm (about 77% of the event distribution),

that resolution is 2.1% (1.1 MeV). As the interaction occurs closer to the front face, the

resolution worsens due, for example, to PMT saturation and faster variation of the solid

angle subtended by nearby PMTs. The average resolution is 2.8% (1.5 MeV) for 1 ≤ w < 2

cm and 3.3% (1.7 MeV) for w < 1 cm. These are to be compared with a goal resolution of

1.7%. There are also smaller variations with u and v; the resolution tends to worsen near

the edges of the detector for reasons similar to those explaining the depth dependence.
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Figure 8.5: Distribution of reconstructed photon energies from a 55 MeV source. Shallow
events, w < 2 cm, are excluded.
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8.1.2 DCH

Position Resolution The position measurements of a track along the drift chamber are

used to determine its trajectory from the target to the timing counter. One source of

uncertainty is that of multiple scattering in traversing the drift chamber modules, which is

irreducible. The uncertainty in the projected position at the next chamber due to scattering

is 300 µm. Coulomb scattering comes into play in fitting a global trajectory as a source of

error in the track momentum and direction angles; however, it does not constitute a source

of error in a single position measurement. The uncertainty in a single position measurement

is henceforth referred to as an intrinsic resolution.

Intrinsic R Resolution A technique for measuring the intrinsic radial position resolution

is illustrated in Figure 8.6. The method considers clusters with exactly one hit in each

Figure 8.6: A diagram of the technique for measuring the intrinsic radial position resolution.

chamber plane, on adjacent cells, belonging to single-turn tracks passing the selection criteria

of section 7.2, excluding hits with a drift distance smaller than 500 µm (small drift distance

hits are more likely to have incorrect left/right assignments). A local track circle in the
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xy plane is calculated from the position of this cluster and the two neighboring clusters.

Cases in which there is a skipped chamber within the track circle or a neighboring cluster

consists of only one hit are further eliminated. Each hit is then propagated to the central

chamber plane using this trajectory and the difference in the two radial positions at the

central plane is interpreted as a measure of the single hit position resolution. Since the

trajectory is determined from local information and only used to propagate the hit positions

over a small distance, this technique is not very sensitive to multiple scattering or errors in

the chamber alignment. Figure 8.7 shows the distribution of Rplane 0 − Rplane 1. Assuming

uncorrelated hit errors, the width of this distribution is to be divided by
√

2, yielding a single

hit radial position resolution of ∼ 250 µm with additional non-Gaussian tails. This is to be

compared with a goal resolution of σR = 200 µm. This resolution gets contributions from

drift diffusion, the precision of the hit time, the precision of the track time, the accuracy with

which the magnetic field is known, and the accuracy of the time-to-distance relationship.
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Figure 8.7: A Gaussian fit to the distribution of Rplane 0 −Rplane 1 out to ±1 mm.
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Intrinsic Z Resolution A technique for measuring the intrinsic Z position resolution

is illustrated in Figure 8.8. Two-hit clusters belonging to a track segment are selected

in the same way described for the radial position resolution measurement to compare the

two measured Z positions. The calculated track circle in the xy plane is used to define

a local coordinate system, with the center of the circle defining the origin. Within this

coordinate system, a polar angle (Φ) is calculated for each overall cluster position and for

each hit within the cluster, as shown in Figure 8.8a. From the three cluster coordinates,

a quadratic trajectory for Z as a function of the local Φ is computed. This trajectory is

used to project the measured Z coordinates of the two hits in question to a common Φ and

the resulting distribution in the difference of the projected Z coordinates, Zlate − Zearly, is

used to infer the intrinsic Z resolution, as pictured in Figure 8.8b. This procedure is also

(a) A view of a track segment in the xy
plane. The red circle represents the cal-
culated track circle, passing through each
of three measured cluster positions.

(b) A view of a track segment in the ZΦ plane.
The red trajectory is used to project one hit of
the central cluster to the same Φ location as the
other hit. The difference in projected Z positions
is plotted with a fixed sign convention: Zlate −
Zearly. The late hit occurs later along the path
of the positron than the early hit.

Figure 8.8: A diagram of the technique for measuring the intrinsic Z position resolution.

largely insensitive to multiple scattering and errors in chamber alignment. Figure 8.9 shows

the distribution of Zlate−Zearly. This implies a single hit longitudinal position resolution of

∼ 900 µm and additional non-Gaussian tails. This is to be compared with a goal resolution

of σZ = 300 µm. The largest known contribution to this number comes from the precision
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with which the electronic voltage baseline is known in the presence of noise fluctuations, as

discussed in section 5.2.1. This gives a contribution to the Z resolution whose magnitude

depends on the pattern of charge induced on the pads and on the location of the wire

within the detector. Averaging over many events distributed throughout the detector gives

a contribution of σZ,noise = 550 µm to the Z resolution from the precision of the baseline

prediction. Relative gains between the upstream and downstream readout channels of a given

pad, coming either from different preamplifiers or DRS chips, give another contribution to

the Z resolution. In section 6.2.2, the residual uncertainty in relative gains after calibration

is estimated to produce a small error in Z of σZ,gain = 70 µm. An additional uncertainty

arises from potential mismatches in the integration times for measuring the charge at both

ends of a pad. A stochastic error of 1 ns RMS on the difference in integration times is found

to cause an error in Z of about σZ,timing = 350 µm. Another source of error is that from

fluctuations in the Z position of the ionization sites contributing to the charge measurement.

Averaging over different drift distances and angles, the RMS error in the mean Z coordinate

is estimated to be about σZ,ionization = 90 µm. If the amplitude of the charge asymmetry is

systematically different on the hood than on the cathode, this constitutes another effect on

the Z resolution. This can result from chamber bowing due to gas pressure; however, such

effects are calibrated out as described in section 6.2.2. Another source of this effect that is

not calibrated is asymmetric shower development, in which the first arriving drift electrons

come preferentially from the hood (or cathode) side of the cell. It is difficult to estimate

the magnitude of such effects since the expected magnitude of shower offsets is unknown.

More details on the preceding effects are available in a technical note.[61] Lastly, there is a

contribution from extra charge induced on a pad from a hit in an adjacent cell. If in addition

to the charge induced on the pad foils of a cell by a hit on its wire, there is also extra charge

induced from a hit in a nearby cell at significantly different Z, it will produce an error in the

measured Z coordinate. The size of this effect is not precisely known. Summing only the

known or estimated contributions gives an expected Z resolution of 660 µm.
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Figure 8.9: A Gaussian fit to the distribution of Zlate − Zearly out to ±4 mm.

Positron Angle Resolutions The resolution in the measurement of the positron angle

at the target is another necessary ingredient in determining the relative angle response func-

tions. The resolutions in both θe and φe are measured from data by exploiting events where

the positron makes two turns in the drift chamber. Each turn is treated as an independent

track, fitted, and propagated back to the target plane where the emission angles are com-

pared. Since the target plane is the same in both cases, this method is not sensitive to a

displacement of the target from its assumed position, which would produce a systematic error

in the positron angles. The distribution in the difference of the two angle measurements in

double-turn events is shown in figure 8.10 for both θe and φe. Both the correlation between

the positron energy error and the φe angle, and the correlation between the θe angle error

and the φe angle, discussed in section 8.2.2, are naturally present in the distribution of the

difference in φe measurements from the two turns. If the fitted energies or the extrapolated

θe angles of the two turns differ, the mean of the distribution in ∆φe ≡ φ1st turn
e − φ2nd turn

will be offset from zero. Averaging over different values of ∆Ee ≡ E1st turn
e − E2nd turn

e and
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∆θe ≡ θ1st turn
e − θ2nd turn

e would tend to inflate the inferred φe resolution. To minimize this

effect, the φe resolution is measured on a sample of two turn events with cuts imposed:

|∆Ee| < 500 keV and |∆θe| < 10 mrad. The resolution in each turn is assumed to be the

same and these distributions are fit to the convolution of a sum of two Gaussians with itself.

This sum of two Gaussians then represents the response function of the positron angle. The

average θe resolution is 8.07 mrad in the core (77.1% of events) and 17.7 mrad in the tail,

and the average φe resolution is 8.70 mrad in the core (79.5% of events) and 22.0 mrad in

the tail. The goal resolution is σθe,φe ∼ 5 mrad.
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(a) A fit to the distribution of ∆θe on double turn
events.
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(b) A fit to the distribution of ∆φe on double turn
events.

Figure 8.10: Fits for the average positron angle resolutions using double turn events. The
fit parameters shown are for the double Gaussian that is convolved with itself and fit to the
distribution.

Positron Energy Resolution One method for measuring the positron energy resolution

consists of fitting the accidental positron energy spectrum in the sidebands to a model for

the true energy spectrum convolved with a response function:

Probability density(Emeasured
e ) = (Michel ∗ Acceptance)(Etrue

e )⊗Resolution. (8.2)
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Here the true energy distribution is represented by the unpolarized Michel positron energy

spectrum multiplied by an acceptance function. One must assume a functional form for

both the acceptance and the resolution function. Based on the guidance provided by Monte

Carlo, the acceptance function is taken to be of the form:

1 + erf(Ee−µacc√
2σacc

)

2
, (8.3)

and the resolution is taken to be a sum of two Gaussians:

fcore
1√

2πσcore
e(Ee−µe)/2σ2

core + (1− fcore)
1√

2πσtail
e(Ee−µe)/2σ2

tail . (8.4)

A total of six parameters are floated in the fit: µacc, σacc, σcore, σtail, fcore, µe. Figure 8.11

presents such a fit to all positrons passing selection criteria. This gives an average resolution

of 308 keV in the core (82.6% of events) and 1.534 MeV in the tail. There is also a small 25

keV systematic underestimate of the energy. This is to be compared with the goal resolution

of σEe = 180 keV (0.8%). This technique suffers from the drawback that it is affected by

correlations among the acceptance and resolution function since both are floated.

A complimentary approach to determining the positron energy resolution is possible by using

two-turn events as in the positron angular resolution measurements. Figure 8.11a shows the

distribution of the energy difference between the two turns. This is fit to the convolution of a

double Gaussian with itself, the same shape assumed in the Michel edge fit. A disadvantage

of this technique is its inability to detect a global shift in the positron energy scale. This

technique gives an average resolution of 255 keV in the core (65% of events) and 765 keV in

the tail. A systematic offset of 108 keV between the energies of the two turns also appears;

the energy of the first turn is systematically larger than the energy of the second turn. This

can originate from errors in the assumed energy loss in the track fitting or errors in the

magnetic field.
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(a) A fit to the distribution of ∆Ee ≡ E1st turn
e −

E2nd turn
e on double turn events.
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(b) A fit to the accidental (Michel) positron en-
ergy spectrum.

Figure 8.11: Two methods for finding the average positron energy resolution.

Muon Vertex Position Resolution The resolution in the vertex position at the stopping

target is dominated by the positron angular resolution with a small contribution from the

position resolution in the drift chamber. For a proper evaluation of the relative angle response

function, a precise knowledge of the correlations between positron angle error and vertex

position error is required. To simply find the average vertex position resolutions, however,

it is sufficient to measure it directly by comparing the projected point of interception at the

target plane on double-turn events. Figure 8.12 presents the distribution of the difference

in Y and Z vertex coordinates from the two turns. ∆Ze is fit to the convolution of a double

Gaussian with itself, while ∆Ye is fit to the convolution of the sum of three Gaussians with

itself. The resolutions are found to be 1 mm in the core (34.4% of events), 2.739 mm in the

middle Gaussian (46.1% of events) and 1.052 cm in the tail for Y; and 2.254 mm in the core

(85.55% of events) and 6.33 mm in the tail for Z. The goal resolution is σY,Z ∼ 1 mm.
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(a) A fit to the distribution of ∆Ye on double turn
events.

 (cm)1-Z0Z
-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ (
 0

.0
2 

cm
 )

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

310´
 0.0072±Zcorefrac =  0.8555 

 0.000096 cm±Zmean =  0.000000 

 0.0022 cm±ZsigmaC =  0.2254 

 0.012 cm±ZsigmaT =  0.633 

 (cm)1-Z0Z
-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ (
 0

.0
2 

cm
 )

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

310´

(b) A fit to the distribution of ∆Ze on double turn
events.

Figure 8.12: Fits for the average positron vertex resolutions using double turn events. The
fit parameters shown are for the double (or triple) Gaussian that is convolved with itself and
fit to the distribution.

8.1.3 TIC

The resolution of the positron impact time at the timing counter contributes to the relative

time resolution. This is measured on events where a positron passes through two adjacent

bars. The distribution in the difference of the two measured impact times gives a measure

of the impact time resolution. This is shown in Figure 8.13 as a function of bar number

where the resolution is the σ of a fitted Gaussian divided by
√

2. When two bars are crossed

that are connected to different DRS chips, the measured resolution tends to be worse than

when the bars are connected to the same chip due to the clock synchronization. The average

resolution is 75 ps, compared to the goal resolution of 40 ps. Note that this technique does

not account for possible systematic errors in the impact time that vary with Z.
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Figure 8.13: Timing counter resolution as a function of bar number.
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8.2 Resolutions of Multi-detector Measurements

This section outlines the total resolutions achieved in measurements that involve multiple

detectors.

8.2.1 Relative Time Resolution

Radiative muon decays provide a means to measure the relative timing resolution in teγ

under experimental conditions that are identical to those under which a signal would be

taken. Figure 8.14 presents the radiative decay timing peak, whose mean is found to differ

significantly in upstream and downstream events. These distributions are fit to the sum

of a flat line describing the accidental time spectrum and a single Gaussian describing the

timing resolution for radiative decays. The energy ranges are fixed (40 < Eγ < 45 MeV,

40 < Ee < 56 MeV) and relative angle cuts (|θeγ, φeγ| < 400 mrad) are made to avoid

edge effects of the detector acceptances. An additional cut is made to make the kinematics

consistent with radiative decays. For fixed positron and photon momenta, the energy carried

off by the two neutrinos can be calculated (neglecting neutrino masses) as: Eνe + Eνµ =

|~pνe| +
∣∣~pνµ

∣∣ ≥
∣∣~pνe + ~pνµ

∣∣. This triangle inequality saturates when the two neutrinos are

emitted with zero opening angle, thus, one may calculate the minimum energy carried off

by the neutrinos, Eνν , by balancing the positron and photon momenta with two parallel

neutrinos. Then the data is required to satisfy:

Ee + Eγ + Eνν ≤ mµ (8.5)

for consistency with a radiative muon decay at rest. The relative timing resolution on this

sample is σteγ ≈ 180 ps. Since photo-statistics increases with photon energy, the timing

resolution at the signal energy is expected to be slightly better than on the sample with
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40 < Eγ < 45 MeV. The photon timing resolution dependence on energy is modeled as

σtγ ∝ A√
Eγ

. By comparing the measured photon timing resolution at 55 MeV and 83 MeV,

the proportionality constant is estimated to be A = 0.659 ns
√
MeV . The average photon

energy in the radiative decay sample is 42 MeV. The timing resolution can then be naively

extrapolated into the signal region to obtain σteγ =
√

1802 − 0.6592

42
+ 0.6592

52.8
= 174 ps. This

is to be compared with a goal resolution of 64 ps.
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Figure 8.14: Muon radiative decay timing peaks.

The teγ resolution receives three comparably sized contributions: the positron impact time

resolution (∼ 75 ps from 8.1.3), the positron time of flight resolution (∼ 75 ps estimated

from Monte Carlo studies), and the photon timing resolution (∼ 78 ps from 8.1.1).

8.2.2 Relative Angle Resolutions

With no available source of particles at fixed angle, the resolutions in θeγ and φeγ are not

directly measurable. The angular resolutions are, however, composed of things that can

be measured. The relative angle PDFs are complicated functions of the positron angular

resolutions, the photon position resolutions, and the vertex position resolutions, and are
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further complicated by strong correlations of the vertex position resolutions with the positron

angle resolutions. Such a complex scenario is most amenable to a Monte Carlo simulation

according to the measured component PDFs.

For this simulation to be accurate, one needs the form of the correlations between positron

angle error and vertex position error. These correlations are governed by the geometry of

the drift chamber and target, the magnetic field, and the algorithm for propagating drift

chamber tracks back to the target plane.

A technique for determining these correlations directly on data using the same algorithm

for track propagation as in the analysis is developed. Tracks passing the standard selection

criteria are chosen, and the track angles at the first hit chamber are incrementally changed,

one at a time. Each time the direction of the momentum vector at the first chamber is

modified, the track is projected to the target plane and the change in emission angle at the

target is plotted as a function of the change in vertex position at the target. Figure 8.15a

shows the results of the error in Z at the target as a function of the error in θe at the target.

A fit to a line obeying the constraint that zero error in θe should produce zero error in Z

gives the result that a 1 mrad error in θe causes a 288 µm error in Z. Figure 8.15b shows

a similar plot for the error in Y at the target versus the error in φe at the target, with

an additional dependence on φe itself for geometrical reasons. Depending on φe, similarly

constrained line fits to ∆Y versus ∆φe, in 10 mrad bins of φe, give slopes with magnitudes

ranging from 160 µm
mrad

to 506 µm
mrad

depending on φe.

While they do not affect the width of the angular resolutions if they are known precisely,

there are two additional correlations that do affect the mean of the φeγ PDF. An error in

Ee alters the path length and changes the value of φe inferred by the projection back to

the target plane. This correlation is measured as a function of φe with techniques identical

to the those mentioned above. The magnitude of this correlation varies from 0 to 70 mrad
MeV

depending on φe. Finally, an error in θe produces an error in Z, which produces an error in
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Figure 8.15: The correlations between angle error and vertex error.
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X because they are related by the slant of the target plane. Such an error in X results in

an error in φe. The overall effect is a correlation between θe and φe, which is measured in a

way identical to the above and results in slopes ranging from 0.8 to 2 ∆φe
∆θe

depending on φe.

Figure 8.16 maps these correlations as a function of φe.

The average resolutions in θeγ and φeγ are simulated as follows:

• Back-to-back pairs of positrons and photons (i.e. θtrueeγ , φtrueeγ = 0) are generated uni-

formly in θe and φe over the detector acceptance, with the vertex fixed at the origin

(i.e. X true = 0, Y true = 0, Ztrue = 0). These conditions uniquely determine the first

conversion position of the photon except for its depth, w, which is sampled from a

probability distribution based directly on a histogram of conversion depths in data.

This gives the true coordinates of the first conversion: (utrue, vtrue, wtrue).

• The resolution effect on the positron angles is introduced by generating measurement

errors in φe and θe according to the average resolutions in those variables presented

in section 8.1.2. The measured positron angles are related to the true angles by the

simulated measurement errors: θmease = θtruee + ∆θe, φ
meas
e = φtruee + ∆φe.

• Based on the generated error in θe, ∆θe, a corresponding error in the vertex Z po-

sition is calculated: Zmeas = ∆Z = dZ
dθe

∆θe, where dZ
dθe

is the measured slope of the

correlation discussed above. A similar error in the vertex Y position is calculated from

the generated error in φe, ∆φe, and the measured angle itself, φmease : Y meas = ∆Y =

dY
dφe

(φmease )∆φe, where dY
dφe

(φmease ) is the φmease dependent slope of that correlation dis-

cussed above. The associated error in X follows immediately from the angle at which

the target is slanted with respect to the beam axis: Xmeas = ∆X = −∆Z tan 20.05◦.

• The resolution effect on the measured conversion position is included by drawing errors

in the coordinates of the first conversion (∆u,∆v,∆w) from their respective average

resolutions outlined in section 8.1.1. This gives a simulated set of measured coordinates
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Figure 8.16: The correlations affecting the φeγ PDF mean.
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for the first conversion: umeas = utrue + ∆u, vmeas = vtrue + ∆v, wmeas = wtrue + ∆w.

• The measured photon angles, θmeasγ and φmeasγ , are calculated from the measured vertex

position and the measured coordinates of the first conversion.

• Finally, the simulated measured relative angles, θmeaseγ and φmeaseγ , are calculated from

θmease , φmease and θmeasγ , φmeasγ . The distributions in θmeaseγ − θtrueeγ and φmeaseγ − φtrueeγ are

plotted over a large number of simulated events, which represent the shape of the

average relative angle PDFs.

These distributions are presented in figure 8.17. The average resolution in θeγ is 13.1 mrad

in the core (78% of events) and 25.2 mrad in the tail, and the average resolution in φeγ is

11.1 mrad in the core (79.9% of events) and 25.3 mrad in the tail. These are to be compared

with a goal resolution in the opening angle of 8.7 mrad.

8.3 Detector Efficiencies

This section outlines the individual detector efficiencies.

8.3.1 Photon Detection Efficiency

One crucial aspect of the calorimeter performance is the photon detection efficiency for signal

photons headed toward its fiducial volume. This number is, in fact, required for normalizing

the experiment. Several sources of efficiency loss contribute: photons may fail to penetrate

the magnet wall and cryostat, photons may be rejected by pile-up cuts, and photons may

be rejected by energy cuts especially when they interact before reaching the active volume.

The photon detection efficiency is measured primarily from signal Monte Carlo. It is defined

as the conditional probability to reconstruct a signal photon that passes pile-up and energy
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Figure 8.17: The average relative angle resolutions.
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cuts, given a reconstructed signal positron. The uncertainty in the result is estimated by

comparing it with the probability to detect 54.9 MeV photons from charge exchange data

given a tagged 82.9 MeV photon in the NaI detector. The result is εγµ→eγ = 0.58± 0.03.

8.3.2 Positron Detection Efficiency

For the purposes of normalizing the experiment, the absolute positron detection efficiency

is not needed. Only the ratio of signal positron to Michel positron detection efficiency is

required. This information is contained in the acceptance part of the fit to the Michel

spectrum of section 8.1.2. The ratio of detection efficiency for signal to Michel positrons in

the interval 50 < Ee < 52.8 MeV is calculated by evaluating the fitted acceptance function

at the signal energy and dividing by the theoretical Michel spectrum-weighted average of the

acceptance function in the interval 50 < Ee < 52.8 MeV. The uncertainty in this number

is estimated by refitting the measured Michel spectrum with an alternate model of the

acceptance function, a Gaussian, and recalculating the efficiency ratio. The result is
εeµ→eγ
εeµ→eνν

=

1.14± 0.06. Figure 8.18 shows both acceptance curves superimposed.

The positron detection efficiency is actually the product of the drift chamber detection effi-

ciency and the conditional timing counter detection efficiency given a reconstructed positron.

The latter can be measured directly. By using a drift chamber-only trigger, and selecting

events with a positron in the drift chamber passing the drift chamber-related selection cuts,

the probability to also have a detected timing counter hit passing timing counter-related

selection cuts can be measured. One impediment to this is the fact that in the default re-

construction algorithm, tracks in the drift chamber already require the presence of a timing

counter hit because it must be used to calculate the track time (see section 5.2.3). To do this

study, an alternate version of the algorithm is used that calculates the track time by testing

a range of track times, and finding the one that minimizes the sum over all clusters on the
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Figure 8.18: The red curve is the standard error function model for the acceptance, while
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of positron energy on the plot.

track of the figure of merit in Eq. 5.20. There is some ambiguity as to what constitutes a

good match between a drift chamber track and a timing counter cluster. Figure 8.19 shows

the conditional timing counter detection efficiency as a function of positron momentum for

a few different choices of selection criteria on the DCH-TIC matching. The efficiency peaks

near the signal energy at 45-51% depending on the timing counter-related selection cuts.

This efficiency is seen to fall for unphysical values of the momentum.
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Figure 8.19: The conditional timing counter efficiency given a positron passing drift chamber-
related selection cuts versus positron momentum for various selection criteria on the match
with the timing counter.
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Chapter 9

Maximum Likelihood Analysis

This chapter describes the methods and results of a maximum likelihood analysis to place

a confidence interval on BR(µ+ → e+γ). A blind analysis is performed by initially hiding

signal-like events. A likelihood function is constructed from probability density functions

(PDFs) of the distributions in Ee, Eγ, teγ, θeγ and φeγ for signal, muon radiative decay, and

accidental background events. Signal-like events are then unblinded, and the likelihood

function is used to obtain a best fit value of BR(µ+ → e+γ). Finally, a 90% confidence

interval is calculated for BR(µ+ → e+γ).

9.1 Blinding and Analysis Windows

A rare decay search is particularly sensitive to the selection criteria. If the experimenter

knows which events satisfy them during the analysis, a biased result can be obtained either

by preferentially choosing cuts to throw away certain events giving a better upper limit than

deserved or by choosing cuts that retain certain events producing an artificially significant

signal.[62] A blind analysis is performed by initially hiding all events that satisfy: |teγ| < 0.7
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ns and Eγ > 48 MeV, so that no signal events are expected in the unhidden sample. The

blinding is held in place until the selection cuts, PDFs, and likelihood analysis procedure

are settled upon. Three windows in the unhidden sample are used for testing and preparing

the final likelihood fit procedure. Each window is defined by a unique set of selections in

addition to the minimal criteria of chapter 7:

1. Left sideband: −2.1 < teγ < −0.7 ns, 48 < Eγ < 58 MeV, 50 < Ee < 56 MeV,

|θeγ, φeγ| < 50 mrad

2. Right sideband: 0.7 < teγ < 2.1 ns, 48 < Eγ < 58 MeV, 50 < Ee < 56 MeV,

|θeγ, φeγ| < 50 mrad

3. Bottom sideband: |teγ| < 0.7 ns, 44 < Eγ < 48 MeV, 50 < Ee < 56 MeV, |θeγ, φeγ| < 50

mrad.

The analysis to search for µ+ → e+γ is performed in the signal window, which consists

of the left and right sidebands together with most of the hidden events: |teγ| < 2.1 ns,

48 < Eγ < 58 MeV, 50 < Ee < 56 MeV, |θeγ, φeγ| < 50 mrad. The purpose of the relatively

large time window (∼ ±11σ) is to use events well outside the region where signal is expected

in order to get high precision on the number of accidental background events in the fit. This

is equivalent to fitting in a smaller time window and adding a constraint on the number of

accidental events in the likelihood function based on extrapolation from the sidebands if the

accidental background is uniformly distributed in teγ.

9.2 Likelihood Analysis Framework

This section defines the likelihood function and describes how it is measured.
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9.2.1 The Likelihood Function

The data to be analyzed consists of a set of NO independent observations (or events) of a

detected photon and positron. The measurements associated with the i’th event are collected

into an observation vector: ~xi, and the union of the NO observation vectors form the entire

set of observations from the experiment: ~X = {~x1, ~x2, ..., ~xNO}. By assumption, the space

of possible detected events is spanned by signal events (µ+ → e+γ), accidental background

events (a positron and photon from different sources), and radiative muon decay events

(µ+ → e+γνµνe). Given NSig signal events, NAcc accidental background events, and NRD

radiative muon decay events, the conditional probability to observe an arbitrary data set ~X

is the product of the conditional probabilities, p(~xi|NSig, NAcc, NRD), to observe each of the

NO events:

P ( ~X|NSig, NAcc, NRD) =

NO∏

i=1

p(~xi|NSig, NAcc, NRD). (9.1)

Since it is only the data set ~X that is known, it is more useful to consider the “likelihood”

of a given set of parameters (NSig, NAcc, NRD), given the observed data. If the experimental

data is substituted for ~X in Eq. 9.1, and the expression is considered to be only a function

of the parameters to be estimated, one obtains the likelihood function:

L(NSig, NAcc, NRD| ~X) =

NO∏

i=1

p(~xi|NSig, NAcc, NRD). (9.2)

The best estimate of the parameters (NSig, NAcc, NRD) is simply the one that maximizes the

likelihood function.

If an ensemble of identical experiments were performed, the observed number of events would

fluctuate according to Poisson statistics because it is a counting experiment. For this reason,

the overall normalization is floated in the likelihood fit by introducing an additional factor
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into the likelihood function, making it an extended likelihood function:

Lext(NSig, NAcc, NRD| ~X) =
NNOe−N

NO!

NO∏

i=1

p(~xi|NSig, NAcc, NRD). (9.3)

Here N ≡ NSig +NAcc +NRD is the expected number of events, which is not necessarily the

same as the observed number of events, NO. This technique has the advantage that error

estimates on the numbers of event types automatically include the statistical error on the

total number of observed events.[63]

Following the strategy of imposing minimal selection cuts and incorporating the dependence

of detector responses on various properties into event-by-event PDFs, the observation vector,

~xi, contains two distinct types of variables. One class of variables, ~m ≡ {Ee, Eγ, teγ, θeγ, φeγ},

consists of the kinematic event properties that follow different probability distributions de-

pending on the event type, and another class of variables, ~y, consisting of event properties

that determine the shape of the former probability distributions, but do not themselves have

varying probability distributions among the three event types. The observation vector now

takes a more specific form:

~xi = {~mi, ~yi} . (9.4)

The conditional probability to obtain ~xi given a certain set of values for the numbers of event

types can be written as:

p(~xi|NSig, NAcc, NRD) =
NSig

N
S(~mi|~yi)p(~yi)+

NAcc

N
A(~mi|~yi)p(~yi)+

NRD

N
R(~mi|~yi)p(~yi). (9.5)

S(~mi|~yi), A(~mi|~yi) and R(~mi|~yi) are respectively the probabilities for a signal, accidental

background, and radiative decay event to result in the set of observables ~mi given a set

of event properties ~yi. Since the probability to obtain ~yi is common to all event types, it

factors out and becomes irrelevant to the maximum likelihood fit (since it always cancels in
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a likelihood ratio test); thus it can be dropped from the likelihood function:

Lext(NSig, NAcc, NRD| ~X) =
NNOe−N

NO!

NO∏

i=1

(
NSig

N
S(~mi|~yi) +

NAcc

N
A(~mi|~yi)

+
NRD

N
R(~mi|~yi)). (9.6)

In the following sections, we discuss the measurement of A(~mi|~yi), S(~mi|~yi), and R(~mi|~yi)

using data.

9.2.2 Accidental Background PDFs

The accidental background PDF is written as the product of five statistically independent

PDFs because the positron and photon are by definition uncorrelated with each other:

A(~mi|~yi) = PA(Ee|~yi)PA(Eγ|~yi)PA(teγ|~yi)PA(θeγ|~yi)PA(φeγ|~yi). (9.7)

While this is obviously true of Ee and Eγ, there could be a correlation between Ee and φeγ,

for example, due to the reasons discussed in section 8.2.2. For accidental events, however, the

true positron energy is unknown (as with all the other kinematic variables), and the flatness

of the Michel positron energy spectrum within the analysis window effectively washes out

the effects of any such correlation.

The accidental teγ spectrum is expected to be flat, but could be modified by trigger effects.

This is checked directly on data using events well outside the signal region and within the

MEG trigger threshold: 1 < |teγ| < 4 ns. Figure 9.1 gives the results of both a linear and

quadratic fit to the accidental teγ distribution. Since the implied deviations from a uniform

(flat) PDF in teγ are not statistically significant, a uniform PDF is used. Furthermore,
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PA(teγ|~yi) = PA(teγ) is assumed because the PDF shape does not change in conjunction with

any specific event property.

The accidental relative angle PDFs are measured directly on data. One effect that may be

present is a possible bias in the direction match criteria used in the trigger. Aside from

that, these distributions should change near the edge of the detector acceptance. Fixing

one of either the photon conversion position or the positron emission angles almost fully

constrains the other for a given value of θeγ and φeγ except for a spread in decay vertex

positions at the target. To deal with acceptance and trigger effects, the accidental φeγ and

θeγ distributions are measured on data, for 1 < |teγ| < 4 ns, in bins of v and u of the photon

conversion position respectively. Figure 9.2 displays these distributions. Each bin in v is

fit to a cubic polynomial in φeγ and the same is done for each bin of u in θeγ. The fit to a

given bin describes the relative angle PDF (φeγ or θeγ) at the average value of v or u in that

bin. This ties down the shape of those PDFs at a discrete set of positions, one for each bin.

The PDF shapes must then be interpolated between bins. Between two bins, this is done

by continuously deforming the shape of the PDF in φeγ and θeγ at one bin into the shape

of the PDF at the adjacent bin along v and u respectively through a technique described in

[64]. Figure 9.3 shows an example of how the shape of the PDFs change between bins. At

the edge bins, where no PDF is available to tie down the shape beyond the outermost bins,

the fitted PDF shape in that bin is assumed to be constant from the average value of v or

u in that bin to the edge of the acceptance cut in v or u, so there is no interpolation at the

edges. The complete set of accidental φeγ distributions for all values of v gives the PDF:

PA(φeγ|v), and the complete set of accidental θeγ distributions for all values of u gives the

PDF: PA(θeγ|u).

The accidental positron energy spectrum is that of the Michel positron energy spectrum.

The measured positron energy spectrum includes the effects of the detector acceptance and

resolution. As mentioned in section 5.2.4, the Kalman filter used in the positron track recon-
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Figure 9.1: Some maximum likelihood fits to the accidental teγ distribution. The fit PDFs
are normalized to the data sample, constraining their form.
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(b) Accidental distribution of φeγ in different bins
of v.

Figure 9.2: Accidental angle distributions used to build the PDFs.

struction provides an event-by-event estimator of the uncertainty in the measured positron

energy, δEe. The energy resolution is expected to worsen as δEe does, and the acceptance

may change as well; both result in the measured accidental positron energy distribution

changing its shape according to δEe. To quantify this, all positrons passing selection criteria

are sorted into several bins of δEe, and each is fit to the model described in section 8.1.2

with a floating acceptance and resolution function. Figure 9.4 illustrates how the spectrum

changes with δEe. This ties down the shape of the spectrum in each of the δEe bins, and an

interpolation between them is done in the same way described for the accidental angle PDFs.

The complete set of accidental positron energy distributions for all values of δEe gives the

PDF: PA(Ee|δEe).

The measured accidental photon energy spectrum is a mixture of photons coming from muon

radiative decay, annihilation in flight, and bremsstrahlung, combined with the effects of the

detector acceptance, resolution, and pileup, making it difficult to reliably model. For reasons

discussed in section 8.1.1, the photon energy resolution is sensitive to the position of the first

conversion point in the calorimeter, thus the accidental photon energy spectrum is expected

to depend on the conversion point. To ascertain which variations are significant, the photon
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(a) A cubic fit to the accidental θeγ distribution
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(b) A cubic fit to the accidental θeγ distribution
for u ∈ [−12,−2.5) cm, the bin adjacent to that
of Figure 9.3a.
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Figure 9.3: An example showing the technique for interpolating the accidental θeγ PDF
between bins of u.
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Figure 9.4: The accidental Ee distribution for different bins of δEe.
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energy distribution in the sidebands (1 < |teγ| < 10 ns) is independently split into several

bins of u,v, and w. A PDF is formed directly from an Eγ histogram of one slice in u (or v

or w) and then fit to the Eγ distribution of other slices in u (or v or w), and the reduced

χ2 is assessed. It is found that fitting one slice to other slices gives statistically plausible

χ2 values except in the case of w, indicating that the accidental photon energy spectrum

changes most significantly with conversion depth. The accidental photon energy is therefore

plotted in different bins of w, and an interpolation is done in the same way described in

the above paragraphs. No fit to the spectrum is made; the histogram itself ties down the

shape in each bin. Figure 9.5 shows the accidental photon energy PDF in different regions of

conversion depth. The complete set of accidental photon energy distributions for all values

of w gives the PDF: PA(Eγ|w).

The full accidental PDF can now be written in a specific form:

A(~mi|~yi) = PA(Ee|δEe)PA(Eγ|w)PA(teγ)PA(θeγ|u)PA(φeγ|v). (9.8)

The absence of some or all of the elements in ~yi in each of the factors on the right hand side

is an implicit assumption that the spectrum in each of those kinematic variables depends

significantly on only some of the elements in ~yi, i.e., the ones that appear in the expression.

9.2.3 Signal Event PDFs

Because of the correlations discussed in section 8.2.2, the signal PDF is written as:

S(~mi|~yi) = PS(φeγ|~yi, Ee, θeγ)PS(θeγ|~yi)PS(Ee|~yi)PS(Eγ|~yi)PS(teγ|~yi). (9.9)

The signal teγ PDF is measured in the way described in section 8.2.1, with the extrap-

olation to the signal photon energy applied. The relative time resolution is checked for
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(a) Accidental Eγ distribution for w ∈ [0, 1.5) cm.
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(b) Accidental Eγ distribution for w ∈ [1.5, 3.7)
cm.
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(c) Accidental Eγ distribution for w ∈ [3.7, 7.2)
cm.
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(d) Accidental Eγ distribution for w ∈ [7.2, 40)
cm.

Figure 9.5: The accidental Eγ distribution for different regions of conversion depth. A PDF
is formed from the distribution in the first bin and used to fit the other bins as shown in
blue.
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dependencies on a number of different event properties with no statistically significant ef-

fects found: δEe, u, v, w,∆RDCH−TIC ,∆ZDCH−TIC and positron track length. Hence, the

only event property used for this PDF is θe, since the mean of the resolution function is

significantly different for upstream and downstream events as discussed in section 8.2.1. The

upstream and downstream teγ resolutions give the PDF: PS(teγ|θe).

Two options are available for measuring the signal Ee PDF, as outlined in section 8.1.2. In

order to make the best use of the event-by-event information provided by the Kalman filter,

the positron energy resolution must be measured as a function of δEe. This is difficult to

do using two turn events because the two turns have different values of δEe; the number of

two turn events available in the data set is also statistically inferior to the number of Michel

positron events. For these reasons, the fit to the Michel edge is used to obtain the signal Ee

PDF. Positrons passing selection cuts in |teγ| > 1 ns are binned into several slices of δEe, and

the fit is performed on each. The double Gaussian resolution component of the fit represents

the signal Ee PDF at the average value of δEe within the bin, and an interpolation between

them is done in the same way described for the accidental angle PDFs in section 9.2.2.

Figure 9.6 plots the change in the components of the resolution with δEe. The complete set

of positron energy resolutions for all values of δEe gives the PDF: PS(Ee|δEe).

The signal Eγ PDF is measured in several divisions of conversion point location (u,v,w)

by the method outlined in section 8.1.1. The usual method of PDF interpolation does not

work in this case because the binning is in three dimensions rather than one. Instead, the

parameters describing the PDF (σup, t, and x0 from Eq. 8.1) are themselves interpolated

independently. Because the dependence on v is particularly weak, the measured values of

each of three PDF parameters are plotted as a function of u and w for each bin in v. Next, a

linear interpolation is done in 2 dimensions (u,w) for each of these plots, resulting in surfaces

like the one shown in figure 9.7. For an event with first conversion coordinates (u,v,w), the

signal Eγ PDF parameters are first obtained from the u-w surface of the correct bin in v,
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Figure 9.6: Fitted values of the parameters for the double Gaussian Ee resolution for several
bins in δEe. Each data point is plotted at the average value of δEe within the bin.
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as well as from the two neighboring bins in v at the same (u,w) location. From these three

values of the PDF parameters at different v locations (but identical u and w locations), a

quadratic interpolation in v is performed. Finally, the result represents the signal Eγ PDF

parameters for this event. The complete set of photon energy resolutions for all values of

u,v, and w gives the PDF: PS(Eγ|u, v, w).
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Figure 9.7: The variation of σup with u and w for fixed v: v ∈ [0, 6.19) cm. The plot on
the left shows the discrete number of bins used to measure σup. The surface on the right is
constructed by a linear interpolation.

The shapes of the signal θeγ and φeγ PDFs are constructed from their components as doc-

umented in section 8.2.2. The resolution in θe is measured from the two-turn method in

several bins of δEe as shown in figure 9.7. Here the problem of ambiguity associated with

the two turns having different values of δEe is unavoidable. It is dealt with by using events

satisfying |δE1st turn
e − δE2nd turn

e | < 200 keV (chosen to balance precision with statistics)

and assigning the average of δEe from the two turns to the event. Figure 9.8 gives the

distribution in δE1st turn
e − δE2nd turn

e on two-turn events for reference. The double Gaussian

resolution fit is taken to represent the θe PDF at the average value of δEe within the bin, and

an interpolation between them is done in the usual way described for the accidental angle

PDFs in section 9.2.2. The φe resolution is measured as a function of both δEe and φe; the
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dependence on the latter is a geometric effect: for larger values of |φe|, the projection back

to the target is more sensitive to errors in the drift chamber position measurements. Since

the variation with δEe is less severe, the φe resolution is measured in 2 bins of δEe with the

two-turn method. For each slice in δEe, the φe resolution is measured in several bins of φe,

and an interpolation in φe is done in the usual way, with no interpolation in δEe. The φe

emission angle associated with a two turn event is obtained from the global track fit to both

turns and then assigned to both turns. Some example fits are given in figure 9.8.

The calorimeter position resolutions are measured as described in 8.1.1 in bins of position.

In lieu of u and v, they are measured as functions of PMT U and PMT V, which are defined

as the distance from the center of the nearest PMT in u and v respectively. The u(v)

resolutions are three-parameter double Gaussians (σcore, σtail, and core fraction) measured in

bins of PMT U and w (PMT V and w). The three parameters are interpolated independently

as in the Eγ PDF by constructing interpolation surfaces in two dimensions. The w resolution

is a single parameter Gaussian (σ) measured in bins of PMT U,PMT V, and w. The three

dimensions are interpolated in exactly the same way as the Eγ PDF, with PMT U-w surfaces

constructed for each bin of PMT V. Figure 9.9 shows an example of this.

Lastly, the correlations between θe and Z, and between φe and Y as a function of φe are taken

from the measurement described in section 8.2.2. The shapes of the relative angle PDFs are

simulated for each event by fixing the shapes of the component resolutions and correlations

depending on the values of u, v, w, φe, and δEe. The complete set of θeγ resolutions for all

values of u, v, w, and δEe gives the PDF: PS(θeγ|u, v, w, δEe).

The φeγ PDF requires knowledge of Ee and θeγ because its mean depends on them. A shift

of Ee away from the signal energy shifts the mean of the φe and hence the φeγ PDF in a

calculable way using the measured correlation between Ee and φe from section 8.2.2. Such a

shift in the mean of the φe PDF produces a shift in the Ye PDF because of that correlation

(discussed in section 8.2.2), which produces a shift in φγ since the photon vertex is assumed
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to coincide with the positron. This is taken into account as an additional shift in the mean

of the φeγ PDF. A non-zero value of θeγ indicates an additional shift of the signal φeγ PDF

mean; however, it is not known how much of this is due to an error in θe and how much

is due to an error in θγ, and it is only the former that causes the signal φeγ PDF mean to

change. Based on the shape of the component resolutions, it is possible to predict an average

error in φeγ due to an error in θeγ. If, for example, the resolution in θe is wide compared

to the resolution in θγ, then a signal event with a non-zero θeγ is likely to be due mostly

to an error in θe, and the slope ∆φeγ
∆θeγ

is expected to be large. For each event, the angle and

position resolutions are known as described above, so they are used to simulate the error in

φeγ due to an error in θeγ for the event. Figure 9.10 gives an example of such a distribution.

These plots are fit to a line to obtain the correlation between φeγ and θeγ for use in shifting

the mean of the signal φeγ PDF. The slopes in ∆φeγ
∆θeγ

range from -0.16 to -1.1. The shifts

due to errors in Ee and θeγ are uncorrelated and simply added to get the total shift of the

signal φeγ PDF mean from zero. The complete set of φeγ shapes and means for all values of

v, w, φe, δEe, Ee and θeγ gives the PDF: PS(φeγ|v, w, δEe, Ee, θeγ).
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(a) A fit to the θe resolution for δEe ∈ [0, 0.242) MeV.
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(b) A fit to the θe resolution for δEe ∈ [0.242, 0.266) MeV.
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(c) A fit to the θe resolution for δEe ∈ [0.266, 0.32) MeV.

 (mrad)1q-0q
-60 -40 -20 0 20 40 60

E
ve

nt
s 

/ (
 2

.5
 m

ra
d 

)

0

100

200

300

400

500

600

700

800

900  0.027±ThetaCoreFrac =  0.605 
 0.18 mrad±ThetaMean =  0.84 

 0.014 mrad±ThetaSigmaC =  8.018 
 0.12 mrad±ThetaSigmaT =  16.01 

(d) A fit to the θe resolution for δEe ∈ [0.32, 1.1) MeV.

Figure 9.7: Fits to the difference in θe on double turn events in several bins of δEe. The fit
parameters shown are for the double Gaussian that is convolved with itself and fit to the
distribution.
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Figure 9.8: The distribution of δE1st turn
e − δE2nd turn

e . The region between the red lines is
used to construct positron angle PDFs.

The full signal PDF can now be written in a specific form:

S(~mi|~yi) = PS(φeγ|v, w, δEe, Ee, θeγ)PS(θeγ|u, v, w, δEe) (9.10)

×PS(Ee|δEe)PS(Eγ|u, v, w)PS(teγ|θe).

9.2.4 Radiative Decay Background PDFs

The radiative decay branching ratio from theory is a function of Ee, Eγ, θeγ and φeγ, making

these automatically correlated, but not teγ. It follows that the radiative decay background

PDF can be written as:

R(~mi|~yi) = PR(Ee, Eγ, θeγ, φeγ|~yi)PR(teγ|~yi). (9.11)
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(a) A fit to the φe resolution for φe ∈ [−950,−400) mrad.
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(b) A fit to the φe resolution for φe ∈ [−400, 100) mrad.
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(c) A fit to the φe resolution for φe ∈ [100, 500) mrad.
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(d) A fit to the φe resolution for φe ∈ [500, 950) mrad.

Figure 9.8: Fits to the difference in φe on double turn events in several bins of φe for fixed
δEe ∈ [0, 0.258) MeV. The fit parameters shown are for the double Gaussian that is convolved
with itself and fit to the distribution.
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Figure 9.9: The variation of depth resolution with |PMT U | and w for fixed |PMT V |:
|PMT V | ∈ [1.033, 2.067) cm. The plot on the left shows the discrete number of bins used
to measure σW . The surface on the right is constructed by a second order interpolation.
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Figure 9.10: Simulation of φeγ vs. θeγ for the resolution functions specific to a certain event.
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Appendix A gives the tree level differential branching ratio for µ+ → e+γνµνe. This must first

be converted into an expression in terms of Ee, Eγ, θeγ and φeγ, the relevant observables. A

binned probability density map in Ee, Eγ, θeγ and φeγ is prepared by numerically integrating

the six input variables of this expression over the fiducial detector volumes, assuming zero

muon polarization, and performing the change of variables. This represents the true radiative

decay spectrum, and the measured radiative decay spectrum in the limit of perfect detector

resolutions and the absence of acceptance effects. Figure 9.11 presents the projected one-

dimensional distributions in each of these variables. In reality, the measured kinematic

radiative decay PDF must be corrected for detector acceptance variations and response

functions over each of these four variables as well as the correlations between errors in Ee

and φeγ, and θeγ and φeγ. This involves multiplying by acceptance functions, and performing

a four-dimensional convolution of the true spectrum with the resolution functions taking into

account the correlations between errors. Since the acceptance effects, resolution functions,

and strength of the correlations depend on the event properties (i.e. ~y), a separate PDF

is prepared for each individual event. Figure 9.12 shows an example of the resulting PDF

for a particular event. The positron energy acceptance is taken from the fits to the Michel

edge of section 9.2.3. The acceptance function from the fit to each bin of δEe represents

the acceptance at the average value of δEe in that bin, and an interpolation between them

is done in the same way described for the accidental angle PDFs in section 9.2.2. The

relative angle acceptances are taken from the measured accidental angle distributions from

section 9.2.2. As such, they are functions of u and v respectively. The photon energy

acceptance, which comes entirely from the trigger efficiency, is estimated from the ratio of

events that fire the MEG trigger to events that fire a trigger with a lower photon energy

threshold. This is well modeled by an error function whose parameters are measured at

different position bins in (u,v,w) and then interpolated in the same way the signal Eγ PDF

of section 9.2.3 is interpolated. Since the acceptance is essentially flat above ∼ 46 MeV,

it is only important in the bottom sideband. The positron energy, photon energy, and
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relative angle resolution functions are the same as those used in the signal PDFs. The

correlations between errors in Ee and φeγ and between θeγ and φeγ are known from section

9.2.3 and included in performing the convolution. The resulting density map in the kinematic

quantities for any given set of parameters {u, v, w, δEe, φe} gives the kinematic part of the

radiative decay PDF: PR(Ee, Eγ, θeγ, φeγ|u, v, w, δEe, φe).
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(d) Projection of true radiative decay spectrum in
φeγ .

Figure 9.11: The one-dimensional true radiative decay distributions. Each plot is made by
integrating out the other three variables. They are normalized to unity at their maximum
value.

The radiative decay teγ PDF is the same as for signal except that the extrapolation of the

resolution to the signal energy is not applied. Because the true photon energy for radiative

decays is unknown (unlike signal photons), the Eγ dependence of the timing resolution is

not used. The upstream and downstream teγ resolutions give the PDF: PR(teγ|θe).
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Figure 9.12: The one-dimensional radiative decay PDF distributions for a certain event.
Each plot is made by integrating out the other three variables. They are normalized to unity
at their maximum value. Note that the projected angle PDFs do not reach zero within the
analysis window.
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The full radiative decay PDF can now be written in a specific form:

R(~mi|~yi) = PR(Ee, Eγ, θeγ, φeγ|u, v, w, δEe, φe)PR(teγ|θe). (9.12)

9.3 Background Estimates for the Signal Window

9.3.1 Accidental Background

Based on the assumption of a flat accidental background PDF for teγ, which is justified in

section 9.2.2, the number of events in the left and right sidebands can be used to estimate the

expected number of accidental background events in the signal window. Together, the two

sidebands contain 500 events over a total of 2.8 ns in teγ, giving the result 500±22.36 accidentals
2.8 ns

.

This predicts 250± 11.18 accidentals in the hidden time region (|teγ| < 0.7 ns), and a total

of 750± 11.18 accidentals throughout the entire signal window (|teγ| < 2.1 ns).

9.3.2 Radiative Decay Background

The expected number of radiative muon decays in the signal window is calculated by per-

forming a likelihood fit to the bottom sideband, in which the number of radiative decays is

allowed to float, and scaling the result to the signal window. A fit to the bottom sideband

with the constraint NSig = 0 gives NRD = 74.5+20.1
−21.0, where the errors are the 1σ uncertain-

ties calculated by MINOS as part of the MINUIT package.[65] The impact of systematic

uncertainties in the radiative decay PDF is estimated by reproducing the PDF with dif-

ferent acceptances, resolution functions, and correlations according to the uncertainties in

each. Since recreating the kinematic radiative decay PDF for each event is extremely time

consuming, the systematics are checked instead by recreating a single kinematic PDF using
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average resolution functions and acceptances for each systematic uncertainty, and an alter-

nate fit to the bottom sideband is performed in each case. The change in NRD is a measure

of the impact of each uncertainty. The largest effect comes from the uncertainty in the width

of the positron energy resolution (4% change in NRD). Even when all the changes in NRD

are added in quadrature, however, the total systematic uncertainty is negligible compared to

the statistical uncertainty on NRD of 28%. The result is extrapolated into the signal window

by calculating the ratio of the integral of the radiative decay PDF over the signal window

to the integral over the bottom sideband. This predicts NRD = 29.42 ± 8.2 in the singal

window.

9.4 Setting a Confidence Interval

In addition to the best estimate of the number of signal events, one needs a measure of

its precision. This is the purpose of constructing a confidence interval. In the frequentist

interpretation, the true number of signal events is an exact but unknown number that does

not follow a probability distribution, while the best estimate of it does follow a probability

distribution. Thus, to the frequentist, a 90% confidence interval is one such that if an

ensemble of similar MEG experiments were performed with measurement errors distributed

according to the assumed PDFs, and with each doing a likelihood analysis and calculating

a confidence interval in the same prescribed way, then 90% of the ensemble of confidence

intervals would contain the true value of the number of signal events. Feldman and Cousins

proposed a method[66] for computing confidence belts in the case of a likelihood function

of a single variable. When nuissance parameters are present, NAcc and NRD in this case,

one way of dealing with them is the profile likelihood method[67], which is adopted in this

analysis. Since the radiative decay PDF density is sparse in the region where the signal PDF

density is high when compared to the accidental PDF density in that region (see section 3.2),
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errors in NRD are not strongly correlated with errors in NSig. NRD is therefore fixed in the

likelihood fit based on the expectation to simplify the analysis. Additionally, the physical

constraints NSig ≥ 0 and NAcc ≥ 0 are enforced. The best fit values are denoted as N̂Sig and

N̂Acc, and the fixed value used for NRD is denoted as N fix
RD.

Once a likelihood fit is performed on a data sample, a number of test values for NSig are

scanned and the confidence level at each is evaluated. The union of all points with a con-

fidence level of 90% or less forms the 90% confidence interval. When NSig = 0 falls within

this region, only an upper limit is reported. The confidence level at each test point, N i
Sig, is

evaluated as follows:

1. The test statistic for data is calculated:

Ri
data =

L(N i
Sig, N

fix
RD, N̂Acc(N

i
Sig))

L(N̂Sig, N
fix
RD, N̂Acc)

. (9.13)

The denominator is simply the maximum value of the likelihood. The numerator is

the likelihood evaluated at the test value N i
Sig, the same fixed value of radiative decays

N fix
RD, and the value for the number of accidentals that maximizes the likelihood with

the other parameters fixed as such N̂Acc(N
i
Sig).

2. An ensemble of similar experiments is simulated taking the true values of the event

numbers to be N i
Sig, N

fix
RD, and N̂Acc. All three of these are fluctuated according to a

Poisson distribution. For each simulated event in a simulated experiment, a set of event

properties, ~y, is drawn randomly from the actual events in the data sample. These

are used to build the necessary PDFs and the kinematic observables, ~m, are generated

according to them.

3. A likelihood fit is performed on each simulated experiment to obtain the best fit param-

eters. For the j’th simulated experiment, the best fit parameters are denoted as: N̂ j
Sig,

N fix
RD (this is still fixed), and N̂ j

Acc. The test statistic for the j’th simulated experiment
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is calculated:

Ri
simj

=
L(N i

Sig, N
fix
RD, N̂

j
Acc(N

i
Sig))

L(N̂ j
Sig, N

fix
RD, N̂

j
Acc)

. (9.14)

Again, the denominator is the maximum value of the likelihood, and the numerator is

the likelihood evaluated at the test value N i
Sig, N

fix
RD, and the number of accidentals

that maximizes the likelihood for this particular simulation with the other parameters

fixed as such N̂ j
Acc.

4. The confidence level at the test point is the probability

P (Ri
data < Ri

sim) (9.15)

calculated over the simulated experiments.

9.5 Normalizing the Experiment

In order to convert a number of signal events into a measurement of or upper limit for

BR(µ+ → e+γ), a normalization factor must be calculated for the experiment. The Michel

decay (µ+ → e+νeνµ), which nearly saturates the total muon decay rate, is used as the

normalization channel because many efficiency and acceptance factors affecting the total

number of detected events are common to both Michel and signal modes and cancel. A

special trigger type that makes the same requirement on the positron as the MEG trigger

but does not require a photon to fire is used to collect a normalization data sample (of Michel

events) and is taken at the same time as the MEG data but with a high prescale factor. The

number of detected signal events, NSig, and the number of detected Michel events, NMichel,
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within the signal window can both be expressed as a product of similar factors:

NSig = BR(µ+ → e+γ)×Nµ × τ × PS × εeTS ×Ge
S × εeS ×Gγ(e)

S × εγ(e)
S (9.16)

NMichel = BR(µ+ → e+νeνµ)×Nµ × τ × PM ××εeTM ×Ge
M × εeM

×fM . (9.17)

The number of muons stopped during the data taking, Nµ, and the livetime, τ , are the same

in both cases since the two samples are taken concurrently. PS and PM are the prescale factors

for the MEG and Michel triggers respectively. εeTS and εeTM are respectively the probabilities

to satisfy the MEG and Michel trigger conditions if an event satisfies all the analysis selec-

tion criteria. Ge
S and Ge

M are respectively the geometric acceptances for signal and Michel

positrons; they are made equal by imposing the same acceptance cut on the positrons in

both data samples. εeS and εeM are respectively the signal and Michel positron efficiencies

for passing through event reconstruction and selection criteria. The remaining factors for

signal account for the photon efficiency. G
γ(e)
S is the conditional geometric acceptance for

a signal photon given that the positron is in the acceptance, and ε
γ(e)
S is the signal photon

efficiency for passing event reconstruction and selection criteria. Lastly, fM is the fraction

of the Michel positron energy spectrum that is used to count Michel events.

Solving Eq.s 9.16 and 9.17 for BR(µ+ → e+γ) gives:

BR(µ+ → e+γ)

BR(µ+ → e+νeνµ)
=

NSig

NMichel

× PM
PS
× εeTM
εeTS
× εeM
εeS
× fM ×

1

G
γ(e)
S ε

γ(e)
S

. (9.18)

Michel positrons in the energy range 50 < Ee < 56 MeV are used for the normalization

sample, giving NMichel = 16, 294. The prescale factors are known: PS = 1 and PM =

1.17× 107 ± 1%. The conditional MEG trigger efficiency is measured using data taken with
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a trigger type not containing a direction match requirement on the positron and photon.

The probability to fire the MEG trigger is found as a function of the measured opening

angle and this is extrapolated to the opening angle for signal. Comparing this result with

an independent estimate from signal Monte Carlo gives the uncertainty. The result is εeTS =

0.915±1%. The ratio of positron reconstruction/selection cut efficiencies can be decomposed:

εeM
εeS

=
εeRM
εeRS
× × 1

ε
eEcut
S

.
εeRM
εeRS

is the ratio of efficiencies to reconstruct the positron and pass all

but the energy cut, which is different than one because detector acceptance increases with

energy; this measurement is explained in section 8.3.2. εeEcutS is the efficiency for a signal

positron to have a reconstructed energy inside the analysis window: 50 < Ee < 56 MeV.

This is measured from the fraction of the positron energy resolution function within this

window by averaging over the event-by-event positron energy resolution shapes in the left

and right sidebands. The uncertainty is estimated by comparing it with the fraction of the

average Ee resolution function inside that window. The result is εeEcutS = 0.993±0.2%. fM is

obtained by computing the fraction of the Michel momentum spectrum above 50 MeV, and

the uncertainty is estimated by repeating this with a different lower bound consistent with

the uncertainty in the absolute positron energy scale giving fM = 0.1004± 1.8%. The final

factor can be decomposed: 1

G
γ(e)
S ε

γ(e)
S

= 1

G
γ(e)
S ε

γR(e)
S ε

θcut
S ε

φcut
S

. ε
γR(e)
S is the signal photon efficiency

to reconstruct and pass all but the angle cuts. εθcutS and εφcutS are the efficiencies for a signal

pair to have relative angles inside the analysis window of |θeγ, φeγ| < 50 mrad. The result

for the product G
γ(e)
S ε

γR(e)
S is discussed in section 8.3.1. The remaining factors are computed

in the same way as εeEcutS , resulting in εθcutS = 0.987± 0.2% and εφcutS = 0.917± 5.7%.

The final result is

BR(µ+ → e+γ)

BR(µ+ → e+νeνµ)
= NSig × (9.7× 10−13 ± 10%). (9.19)
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9.6 Inclusion of Systematic Uncertainties

The systematic uncertainties in the shape of the PDFs and normalization are estimated and

incorporated into the confidence level calculation as described below.

9.6.1 Signal PDFs

The systematic uncertainties on the mean and σ of the signal teγ PDF are estimated from

the statistical error on those parameters from the fit to the radiative decay timing peak.

Both parameters are fluctuated from experiment to experiment in the fit PDF during the

confidence level calculation by their uncertainties.

The absolute positron energy scale (or mean of the signal Ee PDF) is obtained by treating it

as a floating parameter in the Michel fit to the accidental positrons. The uncertainty in de-

termining this parameter by such a fit is estimated by changing each of the other parameters

in the acceptance and resolution function by their statistical fit uncertainty and refitting to

check the change in the fitted energy scale. Summing all of these effects in quadrature gives

a measure of the uncertainty in the positron energy scale. The systematic uncertainty in the

signal Ee PDF shape is encapsulated in a single parameter for the uncertainty of the full

RMS within the signal window. This is done by measuring the signal Ee PDF as a function

of δEe on Monte Carlo in the same way described in section 9.2.3 and again using the same

technique but measuring the PDF shapes from Emeas
e − Etrue

e . This results in two sets of

signal Ee PDFs for any value of δEe: true and measured. The full RMS of each is calculated

and compared over the distribution of δEe values in the left and right sidebands. It is found

that there is both a systematic overestimate of the full RMS of the measured compared to

the true PDF on average as well as a stochastic fluctuation about that value. The systematic

portion is handled by generating all experiments from an accordingly tighter PDF than that
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used for fitting. The stochastic component is incorporated by fluctuating the full RMS of

the fit PDF by its value from experiment to experiment.

The absolute photon energy scale (or peak of the signal Eγ PDF) is obtained from the

55 MeV peak in the charge exchange data. Several sources of uncertainty are added in

quadrature: the deviation of the 82.9 MeV peak from expectation, the estimated uncertainty

of the non-uniformity corrections of section 5.1.2, the estimated uncertainty in the PMT

gains, and the statistical uncertainty of the fits to 55 MeV data. As for the signal Eγ

PDF shape, both the uncertainties in σup and t as well as the correlation between them are

taken from the statistical error on the fits to the 55 MeV peak. All of these parameters are

fluctuated accordingly in the fit PDF from experiment to experiment during the confidence

level calculation.

The relative alignment of the DCH and XEC detectors is checked using cosmic rays. A

systematic shift in θeγ away from zero is found, and the data is corrected for this. The

uncertainty in this measurement contributes to the uncertainty in the mean of both the

φeγ and θeγ signal PDFs. θe has an additional uncertainty due to the precision of the DCH

alignment and knowledge of the magnetic field, which is estimated using alternate alignments

and magnetic fields, and inserted into the total θeγ signal PDF mean uncertainty. The

uncertainty in the position of the target plane, estimated from the optical survey precision,

results in an uncertainty in φe that is incorporated into the uncertainty of the φeγ signal PDF

mean. Systematic uncertainties in the full RMS of both relative angle PDFs are estimated

by calculating the change in the full RMS due to changes in each of the component PDFs

used to build them and adding the results in quadrature. This receives contributions from

uncertainties in the following:

• The photon first conversion position resolution. The uncertainty in the full RMS of

the photon position PDFs are estimated to be σuRMS
= 0.3 mm, σvRMS

= 0.3 mm, and
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σwRMS
= 0.7 mm.

• The size of the positron angle/vertex position correlations. The slopes of dZ
dθe

and dY
dφe

measured in section 8.2.2 are compared with the results of signal Monte Carlo yielding

the slope uncertainties: σdZ/dθe = 17% and σdY/dφe = 61%.

• The width of the positron angle PDFs. The uncertainty in the full RMS of each is

estimated by the same method as for the signal Ee PDF. They too give a coherent

component (θe, φe PDF widths overestimated by 20% and 25% respectively) and a

stochastic component (σφeRMS = 9.2% and σθeRMS = 3.3%). The coherent parts are

converted into a rescaling factor to generate using accordingly narrower relative angle

PDFs than the fit PDFs.

The mean and full RMS of each relative angle fit PDF is fluctuated from experiment to ex-

periment in the confidence level calculation. The uncertainties of the slopes in the remaining

correlations are found to be σdφeγ/dEe = 35% by the same technique used for the angle/vertex

correlations and σdφeγ/dθeγ = 8.1% by the same technique used in calculating the total un-

certainty in the angle PDF widths from all contributions. These are also fluctuated in the

fit PDFs.

These are all summarized in table 9.1.

Lastly, the 10% uncertainty in the normalization factor is included by fluctuating the number

of generated signal events from experiment to experiment.

9.6.2 Radiative Decay PDFs

The radiative decay teγ PDF is fluctuated when fitting simulated experiments in the same

way as the signal teγ PDF with the same uncertainties. This is not a feasible approach for
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Table 9.1: A summary of the systematic uncertainties in the signal PDFs.

Observable Uncertainty in Uncertainty in Scale factor on
fit PDF peak fit PDF width generation PDF width

teγ 10 ps 7% 1

Ee 40 keV 10% 0.79

Eγ 0.31% 15% (σup) 1

θeγ 4 mrad 3.6% 0.87

φeγ 4 mrad 9.5% 0.89

the kinematic radiative decay PDF because of the intense computation required to perform

the convolution. Since the number of radiative decay events is fixed in the likelihood fit,

uncertainties in the shape of the kinematic radiative decay PDF are equivalent to uncertain-

ties in the number of radiative decays in the signal window. As discussed in section 9.3.2,

the uncertainty in the number of radiative decays is dominated by statistics anyway. This

uncertainty is integrated into the confidence level calculation by generating a true number

of radiative decay events, in each simulated experiment, according to a Gaussian probability

distribution centered at the expectation (the same number that NRD is fixed to in the fit),

and whose σ is the uncertainty.

9.6.3 Accidental Background PDFs

As discussed in section 9.2.2, the accidental teγ PDF is consistent with being flat. The

statistical error on the slope of a line from the fit mentioned in that section is used to

represent the systematic uncertainty of the flatness. This is incorporated in the confidence
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level calculation by introducing a non-zero slope in the accidental teγ fit PDF that fluctuates

from experiment to experiment according to its uncertainty.

The accidental φeγ, θeγ, Ee and Eγ PDFs are each extracted by an interpolation in some

parameter of distributions measured directly on data, and do not have an explicit functional

form. To estimate the uncertainty in these PDFs, each is re-measured in the way described

in section 9.2.2 on an alternate set of sideband events. In the confidence level calculation, the

fit PDFs are a properly normalized superposition of the nominal and alternate distributions,

where the coefficients are fluctuated from experiment to experiment so as to give equal weight

to the nominal and alternate PDF on average.

9.7 Blind Sensitivity Estimation

An estimate of the upper limit at 90% CL that the analysis of the signal window is expected

to obtain in the case that there are no true signal events is performed in a few different ways

while still remaining blind.

9.7.1 Fitting the Sidebands

Since the left and right sidebands are located > 2.7σ away from the peak of the signal and

radiative decay teγ PDF, they are presumed to be free of signal and radiative decay events.

A fictitious µ+ → e+γ search is carried out in the left and right sidebands by shifting the

signal and radiative decay teγ Gaussian PDF means away from zero by -1.4 ns and +1.4

ns respectively. The number of radiative decays is fixed to zero in each case. Table 9.2

summarizes the resulting likelihood fits and calculated upper limits.
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Table 9.2: Results of the fictitious signal searches in the sidebands. The asymmetric errors
on the best fit parameters are the 1.645σ uncertainties calculated by MINOS.

Fit Number of Best Fit NSig UL BR(µ+ → e+γ)
Region Observed Events (NSig, NAcc) (90% CL) UL (90% CL)

left sideband 262 (0.00+4.77
−0.00, 262+27.5

−25.7) 5.3 5.1× 10−12

right sideband 238 (0.00+2.88
−0.00, 238+26.3

−24.5) 3.0 2.9× 10−12

9.7.2 Simulating Experiments

Another estimate of the expected sensitivity is based on a pure simulation. An ensemble of

experiments is simulated assuming no signal and setting the true number of accidentals and

radiative decays to their signal window expectations from section 9.3. In each experiment,

the event numbers are fluctuated according to Poisson uncertainties. For each simulated

event in a simulated experiment, a set of event properties, ~y, is drawn randomly from actual

events in the left and right sidebands. These are used to build the necessary PDFs and

the kinematic observables, ~m, are generated according to them. A likelihood fit is done on

each experiment, fixing NRD to the expectation in section 9.3.2, and a 90% CL interval is

computed. The resulting histogram of upper limits, shown in figure 9.13, can be interpreted

as a probability distribution of upper limits to be expected from a null experiment due to

the statistical nature of the PDFs. The median of that distribution is NSig = 5.1 (90% CL

UL), which corresponds to BR(µ+ → e+γ) < 4.9× 10−12 (90% CL). The distribution is also

consistent with the upper limits obtained on the sidebands in section 9.7.1.
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Figure 9.13: Simulated distribution of upper limits.

The same technique is used to investigate the discovery potential of the experiment. The

simulation is performed for a few different non-zero numbers of true signal events. In each

case, the median lower limit is calculated for various confidence levels. The results are

reported in table 9.3.

9.8 Results of the Fit to the Signal Window

The likelihood fit to the signal window is done with the constraint that NRD = 29.42, as

discussed in sectin 9.3.2. In the signal window, 790 events are observed and the parameters

that maximize the likelihood function, together with their 1.645σ uncertainties from MINOS,
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Table 9.3: Median lower limits at various confidence levels obtained for different amounts of
simulated signal.

True True BR(µ+ → e+γ) BR(µ+ → e+γ) BR(µ+ → e+γ)
NSig BR(µ+ → e+γ) LL (90% CL) LL (95% CL) LL (99% CL)

5 4.9× 10−12 1.1× 10−12 5.7× 10−13 2.3× 10−14

10 9.7× 10−12 3.6× 10−12 3.1× 10−12 1.3× 10−12

15 1.5× 10−11 7.1× 10−12 6.1× 10−12 4.2× 10−12

are:

(NSig, NAcc) = (1.50+5.82
−2.61, 764.5+47.1

−45.3). (9.20)

Figure 9.14 shows each of the PDFs projected onto each observable.

The confidence level at NSig = 0 is 78%, so only an upper limit is reported. The upper limit

is NSig = 8.1 (90% CL), which corresponds to an upper limit on the branching fraction of

BR(µ+ → e+γ) < 7.9× 10−12 (90% CL). The probability of a null experiment to yield this

upper limit or greater is estimated to be 28% from the simulated distribution of upper limits

in figure 9.13.

The effects of systematic uncertainties in the signal PDF shapes on the fit to the signal region

are investigated by varying the parameters in increments of σ
2
, refitting, and observing the

change in the best fit value of NSig. Figures 9.15-9.16 show the results for the various

components of the signal PDF shapes. The largest effects come from the uncertainties in

the φeγ PDF center and the teγ resolution, but the total uncertainty on NSig from all signal

PDF parameter systematic uncertainties is 0.63, which is small compared to the statistical

uncertainty of ∼ 3.
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(a) Likelihood fit projected onto Ee.
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(b) Likelihood fit projected onto Eγ .
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(c) Likelihood fit projected onto θeγ .
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(d) Likelihood fit projected onto φeγ .
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Figure 9.14: Results of the likelihood fit projected onto each observable by integrating out
the others. The green curve is the signal PDF, the red is the radiative decay PDF, the purple
is the accidental PDF, and the blue is the sum of those three. The area under each curve is
normalized to its best fit result.
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(b) Effects of varying the photon energy resolution
(σup).
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(c) Effects of varying the positron energy scale.
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(d) Effects of varying the positron energy resolu-
tion (full RMS).
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(e) Effects of varying the center of teγ .
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(f) Effects of varying the teγ resolution.

Figure 9.15: Plots of the best fit value of NSig as each energy or time PDF parameter is
changed. The spacing between data points on the horizontal axis is σ

2
, where σ is the quoted

uncertainty in the parameter.
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(a) Effects of varying the center of θeγ .
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(b) Effects of varying the θeγ resolution (full
RMS).
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(c) Effects of varying the center of φeγ .
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(d) Effects of varying the φeγ resolution (full
RMS).

 scale [multiplicative factor]e/d E
ge

fd 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

si
g

n
al

N

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(e) Effects of varying the slope of
dφeγ
dEe

.

Figure 9.16: Plots of the best fit value of NSig as each angle PDF parameter is changed. The
spacing between data points on the horizontal axis is σ

2
, where σ is the quoted uncertainty

in the parameter.
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Chapter 10

Conclusion

During 2009, the MEG experiment completed its second physics run to search for µ+ → e+γ,

acquiring 43 days of data. Positrons were detected in a magnetic spectrometer with a graded

magnetic field. Photons were detected in a 900 liter liquid xenon calorimeter.

We performed a blind analysis that extracted the number of signal events from a maximum

likelihood fit to the data. A confidence interval was evaluated using the Feldman-Cousins

prescription. The simulated sensitivity of the experiment, in case of no signal, was found to

be

BR(µ+ → e+γ)expected < 4.9× 10−12 (90% CL). (10.1)

The results of the µ+ → e+γ search were a best fit number of signal events of 1.50, a 90%

CL interval that included the null hypothesis, and an upper limit of:

BR(µ+ → e+γ) < 7.9× 10−12 (90% CL). (10.2)
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The current best limit remains BR(µ+ → e+γ) < 2.4× 10−12 (90% CL) from the combined

2009 and 2010 data sets; however, the result of this thesis lowers the previous limit obtained

from the 2009 data set alone of BR(µ+ → e+γ) < 9.6 × 10−12 (90% CL)[2] by a factor of

1.2.
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A Radiative Muon Decay Branching Ratio

The differential branching ratio, calculated at tree level [68, 19], is given by:

dB(µ± → e±γνν) =
α

64π3
βdx

dy

y
dΩedΩγ × (A.3)

[
F (x, y, d)∓ β ~Pµ · p̂eG(x, y, d)∓ ~Pµ · p̂γH(x, y, d)

]
.

~Pµ is the muon polarization vector; ~pe and ~pγ are the positron and photon momenta in the

muon rest frame; p̂e and p̂γ are the corresponding unit vectors; β ≡ |~pe|
Ee

; d ≡ 1 − βp̂e · p̂γ;

x ≡ 2Ee
mµ

; and y ≡ 2Eγ
mµ

.

Furthermore,

F = F (0) +

(
me

mµ

)2

F (1) +

(
me

mµ

)4

F (2) (A.4)

G = G(0) +

(
me

mµ

)2

G(1) +

(
me

mµ

)4

G(2) (A.5)

H = H(0) +

(
me

mµ

)2

H(1) +

(
me

mµ

)4

H(2), (A.6)

where

F (0)(x, y, d) =
8

d

{
y2 (3− 2y) + 6xy (1− y) + 2x2 (3− 4y)− 4x3

}
(A.7)

+8
{
−xy

(
3− y − y2

)
− x2

(
3− y − 4y2

)
+ 2x3 (1 + 2y)

}

+2d
{
x2y

(
6− 5y − 2y2

)
− 2x3y (4 + 3y)

}
+ 2d2x3y2 (2 + y)
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F (1)(x, y, d) =
32

d2

{
−y (3− 2y)

x
− (3− 4y) + 2x

}
(A.8)

+
8

d

{
y (6− 5y)− 2x (4 + y) + 6x2

}

+8
{
x
(
4− 3y + y2

)
− 3x2 (1 + y)

}
+ 6dx2y (2 + y)

F (2)(x, y, d) =
32

d2

{
(4− 3y)

x
− 3

}
+

48y

d
(A.9)

G(0)(x, y, d) =
8

d

{
xy (1− 2y) + 2x2 (1− 3y)− 4x3

}
(A.10)

+4
{
−x2

(
2− 3y − 4y2

)
+ 2x3 (2 + 3y)

}

−4dx3y (2 + y)

G(1)(x, y, d) =
32

d2
(−1 + 2y + 2x) +

8

d

(
6x2 − xy

)
− 12x2 (2 + y) (A.11)

G(2)(x, y, d) = −96

d2
(A.12)
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H(0)(x, y, d) =
8

d

{
y2 (1− 2y) + xy (1− 4y)− 2x2y

}
(A.13)

+4
{

2xy2 (1 + y)− x2y (1− 4y) + 2x3y
}

+2d
{
x2y2 (1− 2y)− 4x3y2

}
+ 2d2x3y3

H(1)(x, y, d) =
32

d2

{
−y (1− 2y)

x
+ 2y

}
+

8

d
{y (2− 5y)− xy} (A.14)

+4xy (2y − 3x) + 6dx2y2

H(2)(x, y, d) = −96y

d2x
+

48y

d
. (A.15)
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