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A measurement of the radiative muon decay „+ ! e+”e”„° branching fraction was

done on the basis of the radiative decay data of MEG experiment. The data were

taken periodically one day per week with the beam intensity of 1:2 £ 106 „+=s from

September to December, 2008. The positron was measured by a spectrometer with

gradient magnetic fleld. The photon was detected by an innovative »900 liter liquid

xenon scintillation detector.

The measurement was carried out with a cut-and-count approach. We report the

radiative muon decay branching fraction to be

B(„ ! e”„”°) = (2:84 § 0:20(stat) § 0:05(syst)) £ 10¡7;

with Ee > 46 MeV, E° > 30 MeV, and the opening angle between the positron and

photon µe° in its full kinematic range.

Distributions of three observables, Ee, E°, and µe° , as well as their kinematic corre-

lations were verifled to be consistent with the radiative decays.

xvi



The measurement is in excellent agreement with the prediction of the Standard Model.
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Chapter 1

Introduction

Ever since the discovery of the muon, physicists have been puzzled by the existence

of more than one generation of fundamental fermions and the interactions between

the generations. The standard model (SM) of particle physics is so far the most com-

prehensive and precise theory describing the interactions of the elementary particles.

In the quark sector, the quark mixing in the °avor-changing weak decays are de-

scribed by the Cabibbo-Kobayashi-Maskawa matrix. Recent discoveries of neutrino

oscillations (e.g. by SNO, Super-Kamiokande, K2K, KamLAND, etc.) provide a

direct evidence of the lepton °avor violation among the neutral leptons. Therefore,

understanding the mixings among the charged leptons will bestow a new insight into

the generation mechanism of the fundamental particles and their interactions.

In the SM, lepton °avor is conserved by the assumption of zero neutrino masses.

Observation of neutrino oscillations corresponds to the fact that neutrinos have flnite

masses. Introduction of small neutrino masses by the seesaw mechanism through a

Majorana mass term as an extension of the SM predicts the fraction of charged lepton
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°avor violation (cLFV) at the level that is tens of orders of magnitude lower than the

capability of the experimental technique of the present day. Therefore, a search for

cLFV is a sensitive probe to new physics beyond the SM.

The cLFV signal has been experimentally investigated in many processes, e.g. „ !

e°, ¿ ! „°, ¿ ! e°, „ ! eee, „N ! eN , etc., among which „ ! e° is the

simplest and most famous one, whose current best limit on the branching fraction,

B(„ ! e°) = 1:2 £ 10¡11, is set by the MEGA experiment[1, 2]. The „ ! e° decay

may likely occur with a branching fraction just below this limit, according to many

of the promising theories for physics beyond the Standard Model, in particular, the

Supersymmetric theories of Grand Uniflcation or Supersymmetric Standard Model.

An endeavor that searches for „ ! e° decay aiming at a sensitivity two orders of

magnitude below the MEGA limit has been undertaken at the Paul Scherrer Institut

(PSI), Switzerland since 1999 by the MEG (Muon to Electron and Gamma decay) col-

laboration, composed of some 60 physicists from Italian, Japanese, Russian, Swiss and

American institutions. The MEG experiment uses the world’s most intense DC muon

beam to reach high muon luminosity, employs a novel positron spectrometer with a

gradient magnetic fleld to work e–ciently in a high rate environment, and exploits an

innovative »900 liter liquid xenon photon detector to simultaneously measure photon

energy, position, and time with flne resolutions. MEG started physics data taking in

2008 for three months.

This thesis focuses on the analysis of the radiative muon decay, „ ! e””°, which is

the physics background of the MEG decay signal. With a high muon luminosity and

the designed detector acceptance for high energy photons and positrons, we are able

to measure the radiative decay branching fraction in an uncharted region.
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In Chapter 2, we brie°y overview the theoretical framework of muon decays. Chap-

ter 3 describes the detectors and parts of the MEG experimental apparatus in details.

A general description of the MEG software is given in Chapter 4. In Chapter 5, we

summarize the run 2008 condition and various data types taken. Event reconstruction

algorithms and detector calibrations and performance are presented from Chapter 6

to 8. Selection of events is addressed in Chapter 9 followed by the physical analysis of

the radiative muon decay in Chapter 10. Finally, the thesis is concluded in Chapter 11.
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Chapter 2

Overview

The study of muon physics has yielded great impact on the building blocks of the

SM, in particular, the vector minus axial vector (V-A) framework of weak interaction

and the validity of quantum electrodynamics. In this chapter, we brie°y review the

phenomenology of radiative muon decays.

The dominant decay mode of the muon, „ ! e””, is often called a ‘Michel decay’[3]. It

has a branching fraction of nearly 100%. The muon also decays radiatively, „ ! e””°,

or with an associated e+e¡ pair, „ ! e”e”„e
+e¡. The branching fractions for these

decay modes and the upper limits of some lepton °avor violating decay modes at 90%

confldence level are summarized in Table 2.1.

The „ ! e° decay has been searched for for decades as a sensitive probe of physics

beyond the SM. The MEG experiment conducted at PSI aims to yield a limit on

B(„ ! e°) of the order of » 10¡13. Experimental features as well as the history of

the „ ! e° search are summarized in Appendix A.
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Decay mode Branching ratio Reference
„¡ ! e¡”„”e » 100 %
„¡ ! e¡”„”e° (1:4 § 0:4) %1 [4]
„¡ ! e¡”„”ee

+e¡ (3:4 § 0:4) £ 10¡5 [5]
„¡ ! e¡”e”„ < 1:2 % [6]
„¡ ! e¡° < 1:2 £ 10¡11 [2]
„¡ ! e¡e+e¡ < 1:0 £ 10¡12 [7]
„¡ ! e¡°° < 7:2 £ 10¡11 [8]

Table 2.1: Decay modes and branching fractions of the muon (Listed in Particle Data
Group table [9]).

1This only includes events with E° > 10 MeV. The radiative mode cannot be clearly separated
from the Michel decay in the soft-photon limit. It can be regarded as a subset of the Michel decay
mode.

2.1 Radiative Decay

At tree level in the SM Lagrangian, the muon interacts with the gauge bosons (pho-

ton, and W § and Z0 bosons) and with the Higgs boson. The Lagrangian for those

interactions are given,

L = e„„°„„A„

¡ gp
2
(„”„L°„„LW+

L + „„L°„”„LW ¡
„ )

¡
p

g2 + g02

•

„„L°„

µ

¡ 1

2
+ sin2 µW

¶

„L + „„R°„ sin2 µW „R

‚

Z0
„

¡m„

v
„„„H; (2.1)

where g and g0 are gauge coupling constants, and the Weinberg angle µW is deflned

by sin µW · g0=
p

g2 + g02, and e = g sin µW at tree level. Muon decay is described

by a charged weak-current interaction mediated by W § gauge bosons, as seen in the

second line in Equation 2.1.
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In the SM, the muon decay is described by the V-A interaction. From late 1960s

to 1980s, many experiments were carried out to measure the Michel decays precisely

and all measurements, such as the electron energy spectrum, decay asymmetry and

polarization vector, are found to be consistent with the V-A framework of weak in-

teraction in the SM.

Theoretically, radiative decay is considered as an inner bremsstrahlung process in

the Michel decay. Feynman diagrams for radiative decay are shown in Figure 2.1.

Figure 2.1: Feynman diagrams for radiative decay

The branching fraction as well as the electron and photon energy spectra of the radia-

tive muon decay have been calculated by several authors[10, 11, 12, 13]. Within the

framework of the V-A interaction, the difierential branching fraction of the radiative

muon decay in the muon rest frame is expressed by[14]

dB(„§ ! e§”„”°) =

fi

64…3
fldx

dy

y
d›ed›° ¢

h

F (x; y; d) ¤ fl ~P„ ¢ p̂eG(x; y; d) ¤ ~P„ ¢ p̂°H(x; y; d)
i

;
(2.2)

where the flnal positron (electron) and photon are emitted at energy intervals of dx

and dy with solid angles of d›e and d›°, respectively, while x and y being normal-

ized positron and photon energies, x = 2Ee=m„ and y = 2E°=m„; fl is deflned as
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fl · j~pej =Ee; d is given by d · 1 ¡ flp̂e ¢ p̂°; ~P„ is the muon polarization vector; ~pe

and ~p° are the momenta of the positron and photon in the muon rest frame, and p̂e

and p̂° are their unit vectors, respectively. F (x; y; d), G(x; y; d), and H(x; y; d) in the

SM are given in Appendix B. Figure 2.2 shows the difierential branching fraction as

a function of photon energy, y = 2E°=m„.

Figure 2.2: Difierential branching fraction as a function of photon energy, y =
2E°=m„. It is obtained by integrating over the e energy and the angle between
the e and photon, µe°.

The measurement of the radiative decay branching fraction, (1:4 § 0:4) % (for E° >

10 MeV), listed in the Particle Data Group (PDG) table (Table 2.1) was done by

using a 5-in freon bubble chamber in 1961. Recently a more precise measurements

reported by the PIBETA experiment[15, 16] in 2006 gave

B(„ ! e”„”°) = [4:40 § 0:02(stat:) § 0:09(syst:)] £ 10¡3; (2.3)

under the conditions that E° > 10 MeV and µe° > 30–. Both agree with the SM cal-
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culation; however, both measurements were limited by statistics for photons at high

energy, which leaves B(„ ! e”„”°) with relatively high positron and photon energies

an uncharted region. But B(„ ! e”„”°) with high positron and photon energies is

technically di–cult to measure and is very tiny, e.g. B(„ ! e”„”°)jx>0:8;y>0:5 » 10¡7,

and thus requires high muon luminosity. Measuring B(„ ! e”„”°) at relatively high

energies with good precision gives another test of the V-A interaction.

2.2 Summary

The radiative muon decay, „ ! e””°, as a major background to the MEG experi-

ment is worthy of being studied. The MEG experiment provides an opportunity to

observe radiative muon decay with high positron and photon energies, e.g. x > 0:8

and y > 0:5, and measure its branching fraction. This is a measured test of the V-A

theory of the weak interaction in a region that has not been previously charted. It,

due to the smallness in value, requires high experimental sensitivity. It also needs

high muon luminosity. The MEG experiment has both features. The design of the

MEG, however, which is optimized for two-body decay of back-to-back products with

monochromatic energies, introduces additional di–culties in the analysis of radiative

decay and the precise measurement of its branching fraction.
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Chapter 3

Experimental Apparatus

The MEG experiment is located at the Paul Scherrer Institute (PSI), Switzerland. It

is designed to search for „+ ! e+ +° decay, whose signature is back-to-back positron

and photon pair, coincident in time, both with energy of 52.8 MeV (half of the muon

rest energy). In order to eliminate background events, precise measurements of the

time, energy, and emission angle of the two particles are crucial to the success of the

experiment. An overview of the MEG apparatus is shown in Figure 3.1. Before going

into the details of each component, the global coordinate system used throughout

the thesis will be deflned. The origin (0, 0, 0) is placed at the center of the hollow

COBRA1 magnet, and is also ideally the center of the muon stopping target which

lies inside of the COBRA magnet. The positive z direction is along the muon beam

direction; the y-axis is the vertical axis pointing upward; and the x-axis is the third

axis that, together with y- and z-axes, forms a right-handed coordinate system. The

liquid xenon detector is located at negative x. In terms of a spherical description, µ

is the polar angle from the positive z direction and ` is the azimuthal angle from the

positive x direction.

1Acronym is deflned in Section 3.2.1
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Figure 3.1: An overview of the MEG apparatus

The positive muon beam is transported to the apparatus by the beam transport

solenoid (BTS). The muons are stopped on a thin target, then promptly decay. Any

emitted photons enter the liquid xenon calorimeter (XEC), where their energy, posi-

tion and time are all measured. Emitted positrons can be detected and measured by

the positron spectrometer. Positron tracks are conflned by the the superconducting

solenoidal COBRA magnet, and tracked by the drift chamber (DCH) system. The

DCH measures positron position and determines the positron trajectory, from which

positron momentum and direction are further deduced. Positron timing is determined

by an array of plastic scintillators serving as timing counters (TIC).

Detailed descriptions of the concept and design of each part and sub-detector in

the MEG apparatus are covered in this chapter.
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3.1 Beam and Target

The MEG experiment is conducted at the 590 MeV proton ring cyclotron facility at

PSI, Switzerland, which is currently the world’s most intense DC muon beam.

To achieve su–cient „ ! e° sensitivity, a large number of muon decays is neces-

sary. Therefore, a very intense muon beam is required. The accidental background

rate increases with the instant beam intensity, so a DC beam is better than a pulsed

beam for an optimal signal to noise ratio.

To avoid nuclear capture of muons by the stopping target, a positive muon beam

is preferred than a negative one.

Figure 3.2: The PSI 590 MeV Ring Cyclotron
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3.1.1 …E5 beamline

PSI operates a 590 MeV proton cyclotron, which delivers an up to 2 mA proton

beam with 1.2 MW beam power (see Figure 3.2). Its design is based on criteria that

allow operation at very high beam intensities. A production target is placed on the

primary proton beamline and the produced pions and muons are extracted to the

…E5 channel. The …E5 is a low energy (10-120 MeV/c) pion and muon beamline.

Figure 3.3(a) shows the layout of …E5 beamline. A surface muon [17][18] beam is

produced by selecting muons originating from pions that stop near the surface of the

production target and decay at rest. The surface muons have a momentum of »29.8

MeV/c. Muons lose some energy after going through the thin layer of the target

surface. But the momentum spread is still low. By tuning the beamline to accept

»28 MeV/c, we can collect high intensity positive muons. The measured muon and

pion rates in the …E5 channel are shown in Figure 3.3(b). A peak is seen at around

28 MeV/c.

3.1.2 Beam Transport System

Muons are transported from the production target to the muon stopping target

through a beam transport system consisting of, in order of beam °ow, a quadrupole

triplet (Triplet I), a crossed-fleld separator (Wien fllter), a second quadrupole triplet

(Triplet II) and a beam transport solenoid (BTS). A schematic layout of the beam

transport system is shown in Figure 3.4. The triplets are used to focus the beam.

The Wien fllter, applied with a horizontal magnetic fleld (133 Gauss) and a vertical

electric fleld (195 kV), vertically separates the positive muons and positrons by 8.1¾,

where ¾ is RMS width of the muon and positron beam proflle. A momentum degrader

12



(a) …E5 beamline layout

(b) Muon and pion °ux in …E5 channel

Figure 3.3: …E5 beamline layout and properties
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made of 300 „m Mylar is installed in the BTS to reduce the muon momentum. The

BTS adjusts the oscillation of the beam proflle to minimize the spot size on the stop-

ping target. At beam rate of 3:0 £ 107„=s, the beam can be focused in an elliptical

spot with measured (¾x, ¾y) of (9.5 mm, 10.2 mm) on the muon stopping target.

Figure 3.4: MEG beam transport system layout. Muon beam enters from the left.

3.1.3 Muon Stopping Target

The muon stopping target is installed in the center of the MEG detector. It should

be thin enough to reduce the multiple scattering and the annihilation of the resulting

positrons. The target is made of an elliptically shaped polyethylene foil with thickness

of 205 „m (18 mg=cm2). The foil is supported by a Rohacell[19] frame. The minor

and major axes of the foil ellipse have diameters of 79.8 and 200.5 mm, respectively,

and the frame has a thickness of 2£5.25 mm and a width of 6.5 mm. Six holes (10

mm diameter) are made on the foil to study vertex reconstruction performance and to

align the target position using data. The MEG detector has its full acceptance around

µ = 90–, so a smaller slant angle (from the z-axis) of the target is favored to decrease

multiple scattering of the out going positrons and to reduce photon conversions; and,
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on the other hand, a larger slant angle is needed to enhance the muon stopping

power. The slant angle is optimized to 20:5– for RUN 2008. Pictures of the target,

both uninstalled and installed, are shown in Figure 3.5.

(a) (b)

Figure 3.5: The MEG target. (a), a picture of the uninstalled target; (b), a picture
of target installed in position, viewed from downstream.

3.2 Detector

A schematic layout of the MEG detector is shown in Figure 3.6. Positrons emitted

from muon decays are analyzed by the magnetic spectrometer, which consists of a

thin-walled superconducting solenoid magnet called the COBRA (COnstant Bending

RAdius) magnet, a system of 16 low-mass drift chambers, and fast scintillating timing

counters located both upstream and downstream of the drift chambers. The positron

spectrometer is also called the COBRA spectrometer. A liquid xenon scintillation

detector is used to measure the photon kinematics, i.e. the energy, time and position

of photons at the flrst conversion point in the detector. In this chapter, we describe

the concept and design of each sub-detector.
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Figure 3.6: A schematic layout of the MEG detector.
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3.2.1 The Positron Spectrometer

The nature of the MEG experiment requires its positron spectrometer to work in a

high rate environment (» 3 £ 107s¡1) with good momentum, timing and direction

resolutions. The design of the spectrometer is based on these requirements.

The COBRA Magnet

We used a solenoidal magnet, called the COBRA magnet, with a gradient fleld [20]

as opposed to a more conventional uniform fleld. As shown in Figure 3.7, the CO-

BRA magnet system consists of a main superconducting magnet and two resistive

compensation coils.

(a) A schematic layout of the COBRA magnet (b) A picture of the COBRA magnet

Figure 3.7: The COBRA magnet

The magnet is designed to increase the radius of the positron helix motion as it travels

longitudinally away from the center of the magnet, as shown in Figure 3.9(a). This

is realized by arranging the coils in the main superconducting magnet so that the

17



magnetic fleld decreases as jzj increases, from 1.27 T at z=0 to 0.49 T at jzj=1.25

m as shown in Figure 3.8. In a uniform magnetic fleld, positrons emitted nearly

perpendicular to the beam axis undergo many turns in the spectrometer, whereas a

gradient fleld sweeps out such positrons more e–ciently (Figure 3.9).
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Figure 3.8: Proflle of the magnet fleld along the z axis

In addition, the gradient fleld is designed so that positrons with the same momentum

follow trajectories with a COnstant Bending RAdius independent of their emission

angles, as shown in Figure 3.10(b). This is also how the name COBRA is coined.

However, in a uniform fleld, the positron bending radius depends on its emission

angle, as shown in Figure 3.10(a). Therefore, it allows us to discriminate high mo-

mentum signal positrons from the low momentum background positrons, by designing

the position of drift chambers so that they cover a proper range of radius. It avoids

accepting low energy positrons which come with very high intensity and could easily

saturate the drift chambers. Compared to a uniform fleld, the COBRA fleld reduces

the hit rate in the region of the drift chamber tracking sub-detector (Figure 3.11).
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(a) A uniform magnetic fleld (b) The COBRA fleld

Figure 3.9: The COBRA magnetic fleld compared with a uniform fleld. (a) positrons
emitted close to 90– undergo many turns in the tracking volume in a uniform magnetic
fleld; whereas (b) they get swept out much more quickly in a gradient fleld.

(a) A uniform magnetic fleld (b) The COBRA fleld

Figure 3.10: (a) in a uniform fleld, the bending radii of positrons with the same
momentum depend on their emission angles; whereas (b) in the COBRA fleld, they
are independent of the emission angles.

The outputs of the PMTs used in the liquid xenon photon detector are very sensitive

to the magnetic fleld as shown in Figure 3.12. Therefore, the residual magnetic fleld

produced by the COBRA magnet near the liquid xenon detector can deteriorate the

PMT performance. The tolerance is estimated to be less than 5 £ 10¡3 T. To reduce

the residual fleld, compensation coils were installed at each end of the main magnet.

A contour plot of the residual magnetic fleld near the liquid xenon region is shown in

Figure 3.13.
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Figure 3.12: PMT response in magnetic fleld
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Figure 3.13: A contour plot of the residual magnetic fleld

The wall of the COBRA magnet is designed to be very thin, since photons from muon

decays have to travel through the magnet wall to enter the liquid xenon detector as

shown in Figure 3.6. This is to reduce the photon interaction on the wall. The total

thickness of the material used in the coil and the cryostat of the magnet in front of

the liquid xenon detector acceptance region corresponds to 0.197 radiation lengths of

a MEG signal photon (52.8 MeV).

Drift Chambers

Positron tracks are measured by the drift chamber (DCH) detector located inside of

the COBRA magnet. It reconstructs the positron trajectory to deduce the positron

momentum, emission angle, positron time-of-°ight and the muon decay vertex. The

design of DCH is to optimize its performance in a high rate environment.

The DCH detector is a system of 16 drift chambers radially aligned with 10:5– inter-
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vals in azimuthal Á angle forming nearly a half circle from 11:25± to 168:75± around

the muon stopping target. A schematic view of the DCH system and a picture of the

installed DCH system are shown in Figure 3.14. The DCH module radially extends

from 19.3 to 27.9 cm, which is designed to only have acceptanceof high momentum

positrons (> 40 MeV) as a result of the COBRA gradient ¯eld. In the longitudinal di-

rection, the active region extends up tojzj = 43 cm at the innermost radius andjzj =

20 cm at the outermost. The dimensions of a DCH module is shown in Figure 3.15.

MEG signal positrons emitted from the target withjcosµej < 0.35 andjÁej < 60± are

covered by the DCH geometry.

(a) (b)

Figure 3.14: (a) a schematic view of the DCH system; (b) a pictureof the DCH
system installed in position inside of the COBRA magnet.

(a) A DCH module (b) Dimensions of a DCH module

Figure 3.15: A DCH module with its dimensions (unit in mm)

A schematic layout of a single DCH module with geometrical information is shown

in Figure 3.16. Each DCH module contains two layers of anode wires aligned along
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