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Abstract
l To search for a charged lepton flavor violating decay, μ+ → e+γ, a 
new liquid xenon γ-ray detector has been developed.
l This detector utilizes a VUV-sensitive MPPC newly developed for 

this purpose.

l The detector construction and commissioning was conducted, and 
the performances have been measured.
l Resolution improvements realized by the MPPCs have been 

demonstrated. 
l An unexpected radiation damage on the MPPCs was found. 

l The expected sensitivity with this detector is estimated.
This detector is confirmed to have a sufficient performance to 

search for μ+ → e+γ with a sensitivity of 5x10-14.
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Timeline of LXe detector /my contribution
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Master Doctor

My contribution is to
• Finalize R&D of MPPC
• Join detector construction
• Lead the detector commissioning & pilot runs

for detector performance evaluation.
• Develop and improve the reconstruction algorithm.
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Charged lepton flavor violation
l The Standard Model (SM) in the particle physics are a successful model.
l However, it is though to be a low energy approximation of more fundamental 
physics.
lHierarchy problem.
lDark matter.
letc...

→ Physics beyond the Standard Model (BSM) is actively searched.

l A charged lepton flavor violating (CLFV) decay of a muon, μ→eγ ,
is an interesting probe in the search of BSM.

l Never been observed, and prohibited in SM by charged lepton flavor 
conservation.
l It can occur if we take neutrino oscillation into account, but its branching ratio 
is too small to be detected (Br(μ→eγ)~10-55), due to small mass difference of 
neutrinos.

→ Discovery of CLFV would be a clear evidence of BSM.
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Charged lepton flavor violation (cont’d)
l In some BSM models (e.g. SUSY-GUT, SUSY-Seesaw), 

O(10-12 ~ 10-15) branching ratio is predicted.
lThis is experimentally detectable.

l Current experimental limit: 4.2�10-13 (by MEG, 90% C.L.)
l MEG II searches for μ→eγ with a sensitivity of ~5�10-14.
(one order of magnitude imporvement)

l Complementary with other
CLFV searches in the next decade.
l MEG II (μ→eγ) : This study
l Mu2e, COMET (μN→eN)
l Mu3e (μ→eee)
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How to search for μ→eγ 
l An event signature of μ→eγ is utilized to distinguish signal event from many 
other background events by SM muon decays.

l To identify signal event, we will measure
lγ-ray hit position, energy, and timing.
lpositron momentum and timing.
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• back-to-back
• coincident

2-body decay to nearly massless particles



How to search for μ→eγ (cont’d)
l Dominant background is an accidental coincidence of e and γ.

l A good detector resolution is the key to achieve a good sensitivity in μ→eγ search.
lGood detector resolution

→ Better separation of signal event from background
→ Better sensitivity.
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Dominant Background(BG): accidental considence

detector resolutions

The number of background events in signal region

e & γ: originating from different muons.
• having nearly 52.8MeV,
• emitted nearly back-to-back
• emitted at the nearly same timing



MEG experiment
l MEG experiment searched for μ→eγ.
l Utilized world most DC intense available at Paul Scherrer Institute (PSI). 
l Data-taking time : 4.5 years (2009-2013)

l Sensitivity improvement by another
one order of magnitude is not possible
by a simple extension of MEG.
l The sensitivity improves only

by a factor of DAQ time .
→ It will take O(100) years to achieve 5x10-14

with MEG detectors.
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γ-ray	detector

e+ drift	chamber

Gradient	magnetic	field

e+ timing	counter

MEG II experiment
An upgrade experiment called MEG II is planned,
to improve the sensitivity of MEG by another one order of magnitude.

Better detector resolutions.
l x2 for all detector resolutions

More muon statistics.
l x2.3 muon beam rate
(3�107 → 7�107 μ/s)
l x2.3 positron efficiency

(30% -> 70%)

A new detector for background
tagging.
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MEG II detectors

MEG II experiment
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Readout electronics

Constructed. Commissioning ongoing.

Prototype tested. Final ver. in 2021.

Positron timing counter

Performance demonstrated.
Ready for experiment.

Radiative decay 
counter

MEG II detectors and electronics are 
being prepared.

Aiming to start data-taking in 2021.
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LXe γ-ray detector in MEG
Liquid xenon (LXe) γ-ray detector was used in MEG.
l 900 ℓ LXe detector
l Scintillation light readout by 846 PMTs�Photomultiplier Tube�

Advantages of LXe
l High stopping power (X0=2.8cm)

→ A rather compact detector with a reasonable efficiency.
l Sufficient light yield   (~75% of NaI)

→ Good resolution by large photoelectron statistics.
l Fast decay time of scintillation (τdecay = 45ns for γ)

→ Suitable for an operation in high pileup environment.
l Liquid

→ Uniform response can be achieved easier than crystals. 

Disadvantages of LXe
l Scintillation light (λ=175nm) in VUV (vacuum ultraviolet) range.
l Low temperature (165K) is required
l High purity is required.
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LXe γ-ray detector in MEG II
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MEG II LXe detector

MEG

2	inch
PMT

γ

MEG	II

12�12	mm2

MPPC

γ

~1	m2	 is	covered	by	MPPC	! 0.8 m

1.8m
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LXe detector in MEG has been upgraded to MEG II
to significantly improve its performance.

Major upgrade:
Replacing 216 PMTs on the γ-entrance face
with 4092 MPPCs (new type of silicon photosensor).



LXe γ-ray detector in MEG II (cont’d)
1. Better position resolution
Higher granularity of the readout
→ Better position resolution for shallow event.

(roughly half of signal γ-ray hits “depth < 4cm”)
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LXe γ-ray detector in MEG II (cont’d)
2. Better energy resolution
Better uniformity of the readout
→ Better energy resolution

for shallow event
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LXe γ-ray detector in MEG II (cont’d)
3. Better detection efficiency
Reduced material budget of the photosensors

(0.183 X0 for PMT -> 0.029 X0 for MPPC)

→ Better detection efficiency
(63% in MEG -> 69% in MEG II)
l γ-rays losing its energy before entering LXe

cannot be used in the μ→eγ search.
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VUV-sensitive MPPC
MPPC for MEG II LXe detector has been developed in 
collaboration with Hamamatsu Photonics K.K.

VUV-sensitive (PDE (λ=175nm) > 15% )
l Normal MPPCs are insensitive to the

xenon scintillation light in VUV range.
→

l VUV-sensitive MPPC newly developed.

Large sensitive area (12�12 mm2 )
l To keep the number of readout channels manageable.
l Discrete array of four 6�6 mm2  chips.
l Four chips connected in series at readout PCB to reduce the sensor capacitance 

and the long time constant.
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6 mm

- quartz window
for protection 
(VUV-transparent)
- ceramic package

- 50 μm pitch pixel
- crosstalk and afterpulse 
suppression
- metal quench resister

Hamamatsu S10943-4372 
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VUV-sensitive MPPC (cont’d)
l In the Normal MPPCs, protection layer of resin at the surface absorbs VUV.
→ Protection layer removed. Another VUV-transparent quartz window for 
protection.
l Attenuation length of VUV light in silicon is only 5 nm, and VUV photons cannot 
directly reach the sensitive region (as for visible light).

→ Thinner contact layer & non-zero electric field at contact layer.

l Sufficient PDE (Photon detection efficiency, ������)
above ~20% is demonstrated for xenon scintillation light in lab test.
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Detector construction
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& all MPPC test
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Beam test 
A series of beam test was carried out to evaluate detector performance.

List of obtained data
l BG γ  : γ-rays from muon beam (background in μ→eγ search).
lMainly from radiative muon decay (RMD) on target. 
lGamma-ray energy up to 52.8MeV.

l CW Li : 17.6 MeV monochromatic γ-ray from !"Li(p,()*+Be.
l Calibration data : LED for gain calibration, alpha for PDE calibration, etc...
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Beam test (cont’d)
l Use a prototype of WaveDREAM (electronics for MEG II) for data acquisition. 
l Only a quarter of the detector was read out.

due to the limited number of readout channel.
→ Use γ-rays hitting the center of the readout area to evaluate resolutions.

l Waveforms from each photosensor are recorded.

l Operation conditions
l MPPC

@ over voltage ~7V
l PMT

@ gain ~ 8x105

l Signal amplification
by a factor of 2.5

l waveform digitization
by 1.2GHz  sampling
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Measured performance
Improvements
l Position resolution for shallow events
l Energy resolution for shallow events
l Better timing resolution by analysis optimization
l Reduction of background by AIF 2γ events identification

Issues
l Unknown contribution on energy resolution
l Faster PMT Gain degradation than expected
l MPPC PDE degradation by beam radiation
l Angular dependence of MPPC PDE
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Position resolution 
l Position resolution was measured by placing a lead collimator in front of the 
detector.
l 17.6MeV γ-ray from CW-Li was used because of its smallness of the γ 
generation vertex.
l The resolution is evaluated by fitting the peak by a true hit position distribution 
convoluted by gaussian.
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Position resolution 
l Resolution improvement for shallow events is demonstrated.
→ 30 % sensitivity improvement
l Worse resolution for deep events than expected.
l Reason is not understood yet.

→ 5% sensitivity degradation
(effect limited thanks to the small number of deep events)

2020/11/17 PHD DEFENSE    SHINJI OGAWA

27

0 2 4 6 8 10 12
depth (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
so

lu
tio

n 
(c

m
)

MEG II. Data

MEG II. MC

MEG   . MC

Position resolution vs γ conversion depth

config Sensitivity
(relative to MEG II MC)

MEG 1.30(2)

MEG II MC 1

MEG II Data 1.04(1)



Timing resolution
Timing resolution is improved thanks to a 
analysis parameter optimization.

lTiming of each channel is extracted from
each photosensor waveform.
l Crossing point of a given threshold.

l Timing of γ-ray is reconstructed from a 
weighted average of timing of each channel.

l Threshold used for the timing extraction
is optimized in this study,
to have as good resolution as possible.
l Better timing resolution of each channel

→ Better γ-ray timing resolution.
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Timing resolution
Timing resolution is estimated for BG γ-rays.
l Intrinsic timing resolution from an
“even-odd” analysis is adopted.

Intrinsic resolution of 40 ps is achieved.
l It was 56 ps before parameter optimization.

Sensitivity improved by 10% from MEG II design.
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Energy resolution
γ-ray energy is reconstructed from the sum of the number of detected photons.

resolution estimated for 17.6 & 52.8 MeV γ-ray.
l 17.6 MeV : From monochromatic γ source (CW Li).
l 52.8 MeV : By fitting γ-ray spectrum from muon beam (mainly from RMD).
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Energy resolution - for shallow events-
l Uniformity of the readout for the shallow events improved.
lThanks to the replacement to MPPC.

l Resolution for the shallow events
improved from MEG.
lDemonstrated for 52.8MeV γ-ray.
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Energy resolution -unknown term-
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Energy resolution -unknown term-
l Is the unknown term due to the statistical fluctuation of number of photon?
l The detected number of photon on each photosensor may fluctuate

larger than the Poisson distribution (i.e. 1/ Number of photoelecton).

l For the investigation, “even-odd energy resolution” is investigated.
l Event-by event fluctuation of 

12 all ch. = 12 even ch. + 12 odd ch.
is measured to be larger than simulation.

l By checking the fluctuation of
12 even ch. − 12 odd ch. ,
we can know whether the unknown term is coherent on 12 even ch. and 
12 odd ch. or not.

l Statistical fluctuation will appear as independent fluctuation on 
12 even ch. and 12 odd ch. .
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Energy resolution -unknown term-
l No large excess of the “even-odd resolution” is observed.
l Estimated for MPPC and PMT.
l Many combination of the partial sums are checked.

→ The unknown term  is not due to a statistical fluctuation.
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MPPC VUV PDE degradation
A degradation of MPPC PDE (����) for VUV light is found.

l Correlated with the beam usage -> Should be a kind of radiation damage.
l Obvious for VUV light. -9(2)% by 160 hours MEG II beam usage.
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MPPC VUV PDE degradation (cont’d)
Degradation of PDE is also observed from the beginning of the beam time. 
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MPPC VUV PDE degradation (cont’d)
Another (indirect) evidence of degradation
: PDE of the MPPCs located at the edge (horizontal direction) is lower.

l Material budget of the magnet and the LXe detector are suppressed only in the 
acceptance region.
→ Smaller radiation fluence at the edge. → Higher PDE of the MPPCs at the edge.
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Cause of PDE degradation
This kind of radiation damage
was neither reported nor expected.
l The radiation level of our experiment

should be sufficiently small.
l Degradation of PDE was not reported.

2020/11/17 PHD DEFENSE    SHINJI OGAWA

39
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(in 2019 run)

reported damage

γ-ray (IEL) 0.01 Gy large dark noise rate @>102 Gy

neutron (NIEL) 3�106 n/cm2  (MeV equiv.) large dark noise rate @>108 n/cm2

VUV photon 4.6-5.8�1010/mm2 not reported



Cause of PDE degradation
Observed degradation may be related to a
special detection mechanism of VUV photon in our MPPC.
l Visible photon directly reaches the sensitive region.
l Attenuation length of VUV light in silicon is only 5 nm, and VUV photons cannot 
directly reach the sensitive region.
→ Convert in shallow region, and drift to the sensitive region.

One hypothesis: Surface damage by VUV irradiation.
VUV irradiation
→ Accumulation of stationary charges near the sensor surface
→ Distortion of the electric field
→ Degradation of PDE only for VUV light. 
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Recovery of damage by annealing 
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Annealing is known to be useful for radiation damage of MPPCs.
l By keeping MPPC at higher temperature,
accumulated charges can be de-trapped by thermal excitation.

→ Tested also for our MPPC.
(for small number of MPPCs in the detector)

Recovery of the damage
by the annealing is confirmed.
l MPPCs are heated to ~ 70℃
by a Joule heat for 1-2 days.



Effect of PDE degradation on sensitivity
The PDE degradation may affect the sensitivity of MEG II.

l The degradation speed is getting lower.
→ The degradation speed in the future is not clear.

Effect on the sensitivity.
1. Resolution may deteriorate

at lower MPPC PDE.

2. MEG II data-taking plan
has to be modified.
(maximal continues data-taking
time will be  limited.)
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γ-ray resolution at lower PDE
The γ-ray resolutions may get worse than the measurement at PDE 
7% if the MPPC PDE gets lower by the degradation.

1. Larger statistical fluctuation
Should not be a large effect
because statistical fluctuation of the MPPC signals is not a dominant term in 
the resolution.

2. Worse signal to noise ratio
S/N ratio  can be recovered by utilizing an amplifier
because dominant noise comes from waveform digitizer after amplification.

→ No crucial effect is expected on the resolution by the lower PDE.
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γ-ray resolution at lower PDE (cont’d)
Detector resolution at lower MPPC PDE
is estimated by the simulation.
→
No large resolution degradations are
expected down to PDE of 2%.
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γ-ray resolution at lower PDE (cont’d)
The degradation of the MEG II sensitivity by the resolution 
degradation at lower MPPC PDE is limited.
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Modification on data-taking plan.
In the pessimistic scenario, PDE gets below 2% after 60 days MEG II beam usage.
l We can anneal all the MPPCs during the annual accelerator shutdown period 
(Jan-May).
l Original MEG II DAQ plan (120 days/year x 3 years) has to be modified.

l If we simply carry out 60 days DAQ at MEG II beam intensity for each year,
l!" # → %& = 9.4 × 10./0 (90% C.L., by 3 years DAQ)

l A reduction of the beam rate (not beam time) is proposed in this study
to suppress the degradation as much as possible.
lThe number of accidental backgrounds can be reduced (∝(Beam Rate)^2).
lThis will also improve pileup environment.
l!" # → %& = 6.6 × 10./0 (90% C.L., by 3 years DAQ)

2020/11/17 PHD DEFENSE    SHINJI OGAWA

46



Table of contents
1. Introduction
2. Detector design
3. Detector construction & commissioning
4. Detector resolutions
5. Radiation damage on photosensor performances
6. Expected sensitivity
7. Conclusion

2020/11/17 PHD DEFENSE    SHINJI OGAWA

47



Expected sensitivity
l Sensitivity of MEG II experiment is 
estimated based on the measured 
detector resolutions.
l Including all the measured resolutions

discussed above.

l Calculated for the pessimistic scenario 
and the optimistic scenario on the PDE 
degradation speed in the future.

l The sensitivity of 5×10%&' can be 
achieved by a reasonable amount of the 
beam time (4.0-4.6 years).
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Conclusion (same as Abstract)
l To search for a charged lepton flavor violating decay, μ+ → e+γ, a 
new liquid xenon γ-ray detector has been developed.
l This detector utilizes a VUV-sensitive MPPC newly developed for 

this purpose.

l The detector construction and commissioning was conducted, and 
the performances have been measured.
l Resolution improvements realized by the MPPCs have been 

demonstrated. 
l An unexpected radiation damage on the MPPCs was found. 

l The expected sensitivity with this detector is estimated.
This detector is confirmed to have a sufficient performance to 

search for μ+ → e+γ with a sensitivity of 5x10-14.
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MEG Detectors
aa
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Source of Acc. BG
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positron from Michel decay (! → e$$̅)

γ-ray from
radiative muon decay (RMD, ! → e$$̅&),
and annihilation of Michel positron in flight
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Single event sensitivity
Single event sensitivity = 1/k
k = number of muon decay
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DAQ single event sensitivity (x10-14) sensitivity (x10-14)
MEG 3e7 x 4.5 year 5.8 53

MEG II design 7e7 x 3 year 0.97 5

MEG II plan A 7e7 x 3 year (x0.5) 1.9 9.3

MEG II plan B 3.5e7 x 3 year 1.9 6.6



Positron detectors
a
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RDC
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LXe as scintillator
aa
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LXe as scintillator
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LXe detector  local coordinate
a
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Data reduction
a
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LXe γ-ray detector in MEG II
We have upgraded LXe detector for MEG II to
significantly improve the performance.

We have replaced 216 2-inch PMTs on the
γ-entrance face with 4092 12�12 mm2 MPPCs.
lBetter position resolution

from higher granularity.
lImproved energy resolution

from better uniformity of scintillation readout.
lIncreased detection efficiency

from reduced material of the γ-entrance face.

MEG

2 inch
PMT

γ
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MEG II

12�12 mm2

MPPC

γ

~1 m2  is covered by MPPC !
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LXe γ-ray detector in MEG II (cont’d)
1. Better position resolution
Higher granularity of the readout
→ Better position resolution

for shallow event.
(roughly half of signal γ-ray hits
“depth < 4cm”)
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PMT layout
Layout of the PMTs are also improved.

1. LXe fiducial volume extended by 10% to reduce energy leakage
2. PMT surface are on the holder surface to improve uniformity

3. More PMTs on the top/bottom face to improve uniformity.
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Expected performance
Significant improvement is expected for resolutions 
and efficiency.

MEG
(measured)

MEG II
(simulated)

σ (position) ~5 mm ~2.5 mm

σ (energy) ~2% 0.7 - 1.5%

σ (timing) 67 ps 50 - 70 ps

Efficiency 65% 70%
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MPPC
a
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Series readout of MPPC
Large readout are can lead to
l Larger dark noise rate (not problematic when used at LXe temperature).
l Longer time constant by larger sensor capacitance. 

Sensor capacitance are reduced by a series connection.
Sufficiently short timing constant has been achieved.
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MPPC performance
We have tested MPPC in LXe, and an excellent performance has been confirmed.
l Single p.e. peak is clearly resolved for large sensitive area.
l Gain: 8.0�105 (@ Vover=7V, series connection)
l Low crosstalk & after pulse probability (~15% each@ Vover = 7V)
l Sufficient photon detection efficiency (>15%) for xenon scintillation light.
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Energy resolution
pEnergy resolution for VUV light has been measured as a function of # of p.e
pusing a scintillation light from α source.
pby changing geometrical acceptance with several setups.

pEnergy resolution improves as 
pat least down to ~104 p.e.
pexcess noise factor: 1.2 - 1.3

1/
p

(# of p.e.)
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Result of the mass test

~8 chips4 chips ~19 chips

chip 0
chip 1
chip 2
chip 3

Example of
measured I-V curves

Current offset below
breakdown voltage

Breakdown voltage

Strange shape
of I-V curve

Too large current
compared to the 

spec sheet

V(breakdown) -
V(recommended by HPK)

We confirmed the normal
I-V curves and breakdown
voltages for most of the
channels.

We found 31 bad chips (0.2% of all MPPC chips). 
◦ There are three kinds of bad chips.
◦ Bad chips will not be used in the final detector.
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Signal transmission system
lWe have developed signal transmission system.

lIt can transmit ~5000 ch signals.

lLong cable (~12m) before signal amplification.

lPCB has coaxial-like structure for impedance matching

(50Ω), good shielding from external noise, high bandwidth, and low crosstalk.

lFeedthrough is based on PCB to realize high density transmission.

lThis system has been tested in LXe for 600 ch, and confirmed to work properly.

PCB-based feedthrough

MPPC mounted on PCB

DAQ system

“Coaxial-like structure” PCB

coaxial cable
(2.5 – 4.9m)

coaxial
cable (8.5m)
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MPPC installation to the cryostat
lMPPCs are mounted on PCBs.
lfor signal readout and alignment.
lPCBs are fixed on CFRP support

structure which is attached on cryostat. 
lThese support are designed to 
minimize the material.
lThin support structure

with low mass material
lSpacers to reduce LXe.

������

Prototype for the spacer 
bw/ MPPC and PCB

12

• Any space between MPPC 
and Cryostat wall cause 
detection inefficiency 

• Need to fill the gap with 
light material

MPPC Support structure

SpacerPCB
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MPPC
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Spacer

Spacer
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MPPC installation to the cryostat
a
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Calibration & monitoring tools

LEDs (reused 
from MEG)

α (241Am) 
on wires

LEDs 
(newly added)

(USB camera)

LEDs and α wires are installed as we did in MEG.
Some LEDs are added for calibration of SiPMs.
(Calibration tools with accelerator are not shown here.)
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MPPC alignment
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LXe control system
a
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LXe transfer & purification
l LXe has been transferred to the detector.

l After the purification of a few month, sufficient light yield of LXe has been
achieved by the purification.
l Molecular sieves (LXe circulation) + getter (gXe circulation)
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sensor calibration
Reconstruction of gamma-rays utilizes
“detected number of photon” on each photosensor.

PMT
Q(charge) = Gain x “# of p.e.” = Gain x CE x QE x “# of photon” 

MPPC
Q(charge) = = Gain x ECF x “# of p.e.”  = Gain x ECF x QE x “# of photon” 

Calibration parameters are measured beforehand. 
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sensor calibration (cont’d)
Calibration parameters are

measured beforehand. 
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Alpha DAQ
Alpha event trigger by lateral PMT.
Event selection

◦ Separate alpha and others
by pulse shape discrimination

◦ Select events from each alpha source
by position reconstruction.
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Position reconstruction
l Reconstructed from light distribution on the inner face (i.e. MPPCs).
l Naively speaking:
lu/v: Peak position on u/v plane.
lw: Width of the peak. (deeper event -> wider peak)

l Implemented as a chi-2 minimization defined as:

lOnly the MPPC around the peak is used to suppress bias from shower 
direction.

lSeveral corrections are applied to correct the bias.
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Position resolution 
Effect on sensitivity.
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Angular dependence of PDE

Unexpected angular
dependence of VUV PDE
was observed.
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Angular dependence of PDE
Reconstructed shallower
→ Bias in θ_eγ
→ 0.6% sensitivity degradation at most.
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noise reduction
High frequency noise from readout electronics is subtracted.
l 80 * n Hz
l Phase from DRS clock
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Timing resolution -reconstruction-
Timing of γ-ray is reconstructed from a weighted average
of signal timings on each photosensor.
l Minimization of the !" defined as follows:

l Weight: timing resolution of each channel.
l as a function of number of photoelectron.
l channel with a large number of photoelectrons → better timing resolution.
l channel with a small number of photoelectrons → worse timing resolution.

l Calibration parameters are evaluated from the residual of the !" minimization.
→ Analyzed iteratively.
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How to reconstruct gamma timing
Gamma timing is reconstructed from timing from MPPC & PMT waveforms.

◦ Timing extraction by waveform analysis
+ !" min fit of time information from all ch.

Noise subtraction

Timing extraction

Apply time calibration

!" minimization fit

Waveform Analysis

Timing reconstruction

Robust analysis to high-frequency noise
• Optimal threshold for timing extraction.
• Subtraction of noise coming from system clocks.
• Application of low-pass filter.

#$ minimization fit of all ch time information

!" = &
'((),('+

,-. − ,0123 − ,-45- − ,566789 − ,:
;

"

Gamma hit timing
(fitting parameter)

Time info from each MPPC, PMT
with time calibration

Calibration parameters : extracted from data
• Time walk
• Propagation time of scintillation light.
• Time offset of each channel

PHD DEFENSE    SHINJI OGAWA2020/11/17

89



Timing resolution -calibration-
Calibration parameters
are extracted from residual
in time reconstruction.
→ Extracted iteratively.

2020/11/17 PHD DEFENSE    SHINJI OGAWA

90

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
1/sqrt(# of p.e.)

10

5

0

5

10

15

20
910×

tim
e 

re
si

du
al

 (s
ec

)

0

10

20

30

40

50

60

70

80

90residual vs # of p.e. (MPPC)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
1/sqrt(# of p.e.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tim
in

g 
re

so
lu

tio
n 

(n
s)

sigma

timing resolution vs # of p.e.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
1/sqrt(# of p.e.)

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tim
e 

w
al

k 
(n

s)

mean

timewalk vs # of p.e.



Time offset
time offset of each channel
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Timing resolution
a

2020/11/17 PHD DEFENSE    SHINJI OGAWA

92



Energy offset
Energy offset is monitored
independently from Pedestal run.

Dependence on electronics
temperature is newly identified
and is corrected.
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Energy reconstruction w/ limited ch.
aa
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BG gamma fit
aa
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BG gamma fit
aa
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Energy resolution -unknown term-
l The degradation is not due to the noise.
l The degradation is not due to some instability.
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Pileup effect on position/timing
l 3% inefficiency to signal events.

2020/11/17 PHD DEFENSE    SHINJI OGAWA

98

10− 5− 0 5 10
u (cm) (reco. - truth)

1

10

210

310

without pileup

with pileup

2000− 1500− 1000− 500− 0 500 1000 1500 2000
time (ps) (reco. - truth)

1

10

210

310
without pileup

with pileup

Position Timing



Pileup elimination by waveform
l Identify deviation on sum 
waveform from template.
l Try to eliminate the chi 
squared until it gets converged. 
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Energy spectrum with WF elimination 
a
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Energy spectrum with PL elimination 
Some events left in signal
energy region.
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AIF2G -motivation-
Some of Michel positron annihilate
with electron in material.

In some of the events, two gamma-rays from
annihilation hit the detector.
l more dominant near the signal energy.
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AIF2G -expected performance-
Two peaks on the MPPC light distribution from two gamma-rays are identified.
l ~ 60% of AIF 2γ events can be identified

with a few % misidentification of signal event as a background.

→ Lead to 12% sensitivity improvement (in MC.)
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AIF2G -validation in data-
l Validation of the performance with data was failed.
l Fraction of two γ-rays event increased near the 52.8MeV

both in MEG II and reduced intensity.
→ AIF 2γ events are identified (not coincident pileup).
l 2γ events in the lower energy are measured to be larger than simulated.
l Inefficiency to signal event with full ch readout may also differ from MC.

2020/11/17 PHD DEFENSE    SHINJI OGAWA

104

40 45 50 55 60
Energy (MeV)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fr
ac

tio
n

MC
Data

40 45 50 55 60
Energy (MeV)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fr
ac

tio
n

MEG II

LOW

Low intensity

Fraction of found 2γ event in background γ-rays in 2019 readout

Measured



BACKUP
-radiation-
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PMT Gain degradation 
A gradual decrease of the PMT gain during muon beam usage is known in MEG.
l Probably due to the degradation of the dynode material.
l Degradation was compensated by applying higher voltage

to keep the gain of 1.6�106.
l Degradation by 0.15%/day at 3�107 [μ/s] beam.
→ 0.35%/day was expected at 7�107 [μ/s] beam (for MEG II).
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PMT Gain degradation (cont’d)
Faster gain degradation observed at the beam test with 7�107 [μ/s] .
l Measured to be 1%/day at 7�107 [μ/s] beam, gain 1.6�106 .
l This is probably because the degradation speed is not saturated.

A PMTs operation at reduced gain is tried.
l Degradation speed is halved (0.5%/day), thanks to the reduced dynode current.
l Detector can be operated as long as 5 years if operated at reduced gain.

Effects on the resolution should be small.
l worse S/N, smaller CE, larger TTS etc...
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PMT Gain degradation
a
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PMT QE
a
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Vis PDE in 2019 run
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VUV PDE others
aa
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Annealed MPPC
a
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VUV irradiation at room temp.
MPPCs are irradiated by VUV light from xenon lamp.
l Select VUV peaked at 190nm.
l PDE degradation observed at O(1e4) higher irradiation level than run 2019.
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Summary of MPPC PDE (VUV) 
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MPPC PDE (visible light)
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DAQ at low PDE
Calibration
No problem.

Online resolution
l Online γ-ray resolution should be sufficiently good to keep trigger rate 
reasonable.
l In principle, the same discussion with offline resolution is applicable.
lOr even better due to worse resolution (less requirement) than offline resolution.

l Performance of online γ-ray reconstruction has not yet been demonstrated
due to noise issue on prototype system etc., and should be checked once we 
have full channel readout.
l Offline trigger by simple offline reconstruction should be useful to reduce 
number of recorded event.
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EXPECTED SENSITIVITY

117
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k-factor assumption
l beam rate : 7�107 μ/s
l geometrical acceptance : 10.8%
l positron efficiency : 70%
l γ efficiency : 69%
l trigger and analysis efficiency : 91% (same as the first half of MEG)
l DAQ time : Three years. 20 week data-taking per year with 84% live fraction.

→ k = 1.03�1014
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Position resolution at lower PDE
Position resolution of shallow events limited by event-by-event fluctuation of 
shower development.

Statistical fluctuation on resolution
for deep events.
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Timing resolution at lower PDE
l Statistical fluctuation and worse S/N
deteriorates MPPC timing resolution.
l Usage of larger amplifier gain
can suppress the degradation.
l Timing resolution determined
by PMTs at lower MPPC PDE.
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Timing resolution at lower PDE
a
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Energy resolution at lower PDE
l Statistical fluctuation in energy
resolution is not dominant.
l Unknown term is not statistical
fluctuation (prev. slide).

l Noise term is not dominant.
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Data-taking time
l The data-taking plan of MEG II has to be modified.
lIn the worse case, PDE gets below 2% after 60 days MEG II beam usage.
lWe can anneal all the MPPCs during the annual accelerator shutdown period (Jan-
May).
lOriginal MEG II plan (120 days beam time/year x 3 years) is not possible.

Three alternative annual DAQ plans are compared.
Plan A: 60 days DAQ at MEG II beam intensity.
Plan B: 120days DAQ at halved beam intensity.

◦ Pros: Better significance ( ⁄"#$% "&% )
and better pileup environment than plan A.

Plan C: 67 days DAQ at MEG II beam intensity + an annealing in the middle.
◦ it will take 60 days to anneal all the MPPC

(current best estimate, may include uncertainty).
◦ Pros: Larger muon statistics, and higher PDE than plan B.
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Sensitivity of alternative DAQ plans
Plan B has a best sensitivity in these alternative plans.
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